An Exploration of the Kolmogorov-Smirnov Test as a Competitor to Mutual Information Analysis

  • Carolyn Whitnall
  • Elisabeth Oswald
  • Luke Mather
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7079)

Abstract

A theme of recent side-channel research has been the quest for distinguishers which remain effective even when few assumptions can be made about the underlying distribution of the measured leakage traces. The Kolmogorov-Smirnov (KS) test is a well known non-parametric method for distinguishing between distributions, and, as such, a perfect candidate and an interesting competitor to the (already much discussed) mutual information (MI) based attacks. However, the side-channel distinguisher based on the KS test statistic has received only cursory evaluation so far, which is the gap we narrow here. This contribution explores the effectiveness and efficiency of Kolmogorov-Smirnov analysis (KSA), and compares it with mutual information analysis (MIA) in a number of relevant scenarios ranging from optimistic first-order DPA to multivariate settings. We show that KSA shares certain ‘generic’ capabilities in common with MIA whilst being more robust to noise than MIA in univariate settings. This has the practical implication that designers should consider results of KSA to determine the resilience of their designs against univariate power analysis attacks.

Keywords

Trace Requirement Distinguishing Vector Template Attack Mutual Information Analysis Independent Gaussian Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis: A Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual Information Analysis: How, When and Why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Prouff, E., Rivain, M.: Theoretical and Practical Aspects of Mutual Information Based Side Channel Analysis. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 499–518. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Stephens, M.A.: EDF Statistics for Goodness of Fit and Some Comparisons. Journal of the American Statistical Association 69(347), 730–737 (1974)CrossRefGoogle Scholar
  5. 5.
    Whitnall, C., Oswald, E.: A Comprehensive Evaluation of Mutual Information Analysis Using a Fair Evaluation Framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Peacock, J.: Two-Dimensional Goodness-of-Fit Testing in Astronomy. Monthly notices of the Royal Astronomical Society, 615–627 (1983)Google Scholar
  7. 7.
    Fasano, G., Franceschini, A.: A Multidimensional Version of the Kolmogorov-Smirnov Test. Monthly Notices of the Royal Astronomical Society 225, 155–170 (1987)Google Scholar
  8. 8.
    Mangard, S., Oswald, E., Standaert, F.X.: One for All - All for One: Unifying Standard DPA Attacks. IET Information Security 5(2), 100–110 (2011)CrossRefGoogle Scholar
  9. 9.
    Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual Information Analysis: A Comprehensive Study. Journal of Cryptology, 1–23 (2010)Google Scholar
  10. 10.
    Paninski, L.: Estimation of Entropy and Mutual Information. Neural Computation 15(6), 1191–1253 (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)MATHGoogle Scholar
  12. 12.
    Kraemer, H.C., Thiemann, S.: How Many Subjects?: Statistical Power Analysis in Research, 1st edn. Sage Publications, Inc. (September 1987)Google Scholar
  13. 13.
    Guilley, S., Hoogvorst, P., Pacalet, R.: Differential Power Analysis Model and Some Results. Smart Card Research and Advanced Applications Vi, 127–142 (2004)Google Scholar
  14. 14.
    Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power Analysis, What Is Now Possible.. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  • Carolyn Whitnall
    • 1
  • Elisabeth Oswald
    • 1
  • Luke Mather
    • 1
  1. 1.Department of Computer ScienceUniversity of BristolBristolUK

Personalised recommendations