Reaction Kinetics

  • Johannes Müller
  • Christina Kuttler
Part of the Lecture Notes on Mathematical Modelling in the Life Sciences book series (LMML)

Abstract

Chemical and biochemical networks can be viewed as dynamical systems. The properties of these systems can be complex and sometimes also surprising. Examples are enzyme kinetics, cells that interact and react to their environment by means of regulatory pathways, pattern on the skin of cows, leopards or snails are created by means of biochemical reactions, communication is done by biochemistry, to name but a few. All these very different systems can be modelled using the same basic principles.

Keywords

Periodic Orbit Stationary Point Hopf Bifurcation Boolean Network Slow Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    L. Arnold, Random Dynamical Systems (Springer, Berlin/New York, 2003)Google Scholar
  2. 14.
    M. Barbarossa, C. Kuttler, A. Fekete, M. Rothballer, A delay model for quorum sensing of Pseudomonas putida. BioSystems 102, 148–156 (2010)Google Scholar
  3. 18.
    A. Becskei, L. Serrano, Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)CrossRefGoogle Scholar
  4. 21.
    H. Bisswanger, Enzyme Kinetics: Principles and Methods (Wiley-VCH, Weinheim, 2008)CrossRefGoogle Scholar
  5. 40.
    H. De Jong, Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)MATHCrossRefGoogle Scholar
  6. 49.
    O. Diekmann, S.A. van Gils, S.M.V. Lunel, H.O. Walther, Delay Equations (Springer, New York, 1995)MATHCrossRefGoogle Scholar
  7. 51.
    R. Driver, Ordinary and Delay Differential Equations (Springer, New York/Heidelberg/ Berlin, 1977)MATHCrossRefGoogle Scholar
  8. 58.
    L. Edelstein-Keshet. Mathematical Models in Biology (SIAM, Philadelphia, 2005)MATHCrossRefGoogle Scholar
  9. 61.
    S. Ellner, J. Guckenheimer, Dynamic Models in Biology (Princeton University Press, Princeton, 2006)Google Scholar
  10. 62.
    M. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar
  11. 63.
    M. Englmann, A. Fekete, C. Kuttler, M. Frommberger, X. Li, I. Gebefügi, P. Schmitt-Kopplin, The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites; Analytical approaches using ultra performance liquid chromatography. J. Chromotogr. 1160, 184–193 (2007)CrossRefGoogle Scholar
  12. 67.
    A. Fekete, C. Kuttler, M. Rothaller, B. Hense, D. Fischer, K. Buddrus-Schiemann, M. Lucio, J. Müller, P. Schmitt-Kopplin, A. Hartmann, Dynamic regulation of N-acyl-homoserine lactone production and degradation in Pseudomonas putida IsoF. FEMS Microbiol. Ecol. 72, 22–34 (2010)CrossRefGoogle Scholar
  13. 69.
    R. Field, E. Körös, R. Noyes, Oscillations in chemical systems, part 2. Thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)Google Scholar
  14. 77.
    C. Gardiner, Handbook of Stochastic Methods (Springer, Berlin/New York, 1983)MATHCrossRefGoogle Scholar
  15. 79.
    T.S. Gardner, C.E. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–403 (2000)Google Scholar
  16. 83.
    A. Gierer, H. Meinhard, A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)CrossRefGoogle Scholar
  17. 85.
    T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  18. 87.
    A. Goldbeter, D.E. Koshland, An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840–6844 (1981)MathSciNetCrossRefGoogle Scholar
  19. 88.
    M. Golubitsky, D. Schaeffer, Singularities and Groups in Bifurcation Theory (Springer, New York, 1985)MATHCrossRefGoogle Scholar
  20. 92.
    J.-L. Gouzé, Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15 (1998)MATHCrossRefGoogle Scholar
  21. 103.
    K.P. Hadeler, D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model. J. Math. Anal. Appl. 95, 297–303 (1983)MATHMathSciNetCrossRefGoogle Scholar
  22. 115.
    B. Hense, C. Kuttler, J. Müller, M. Rothballer, A. Hartmann, J. Kreft, Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol. 5, 230–239 (2007)CrossRefGoogle Scholar
  23. 124.
    S. Hooshangi, R. Weiss, The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos 16, 026108 (2006)CrossRefGoogle Scholar
  24. 132.
    F.J. Isaacs, J. Hasty, C.R. Cantor, J.J. Collins, Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. 100, 7714–7719 (2003)CrossRefGoogle Scholar
  25. 137.
    D. Jones, M. Plank, B. Sleeman, Differential Equations and Mathematical Biology (CRC, Boca Raton, 2010)MATHGoogle Scholar
  26. 138.
    H. Kaplan, E. Greenberg, Diffusion of autoinducers is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163, 1210–1214 (1985)Google Scholar
  27. 139.
    S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  28. 153.
    M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)MATHMathSciNetCrossRefGoogle Scholar
  29. 155.
    C. Kuttler, B. Hense, Finetuning for the mathematical modelling of quorum sensing regulation systems. Int. J. Biomath. Biostat. 1, 151–168 (2010)Google Scholar
  30. 161.
    T. Lipniacki, P. Paszek, A. Mariciniak-Czochra, A. Basier, M. Kimmel, Transcriptional stochasticity in gene expression. J. Theor. Biol. 238, 348 (2006)CrossRefGoogle Scholar
  31. 167.
    J. Maybee, J. Quirk, Qualitative problems in matrix theory. SIAM Rev. 11, 30–51 (1969)MATHMathSciNetCrossRefGoogle Scholar
  32. 177.
    J. Müller, C. Kuttler, B. Hense, M. Rothballer, A. Hartmann, Cell-cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 53, 672–702 (2006)MATHMathSciNetCrossRefGoogle Scholar
  33. 178.
    J. Müller, C. Kuttler, B. Hense, S. Zeiser, V. Liebscher, Transcription, intercellular variability and correlated random walk. Math. Biosci. 216, 30–39 (2008)MATHMathSciNetCrossRefGoogle Scholar
  34. 179.
    J. Müller, H. Uecker, Approximating the dynamics of communicating cells in a diffusive medium by ODEs – homogenization with localization. J. Math. Biol. 65, 1359–1385 (2012)MATHMathSciNetCrossRefGoogle Scholar
  35. 181.
    J. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, New York, 2003)Google Scholar
  36. 187.
    W.-L. Ng, B.L. Bassler, Bacterial quorum-sensing network architectures. Ann. Rev. Genet. 43, 197–222 (2009)CrossRefGoogle Scholar
  37. 201.
    M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations (Springer, New York, 1992)Google Scholar
  38. 204.
    N. Rosenfeld, J.W. Young, U. Alon, P.S. Swain, M.B. Elowitz, Genetic regulation at the single-cell level. Science 307, 1962–1965 (2005)CrossRefGoogle Scholar
  39. 212.
    H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (AMS, Providence, 1995)MATHGoogle Scholar
  40. 213.
    H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences. (Springer, New York, 2011)Google Scholar
  41. 215.
    H.L. Smith, Periodic orbits of competitive and cooperative systems. J. Differ. Equ. 65(3), 361–373 (1986)MATHCrossRefGoogle Scholar
  42. 216.
    E.H. Snoussi, Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst. 6, 3–9 (1998)MATHCrossRefGoogle Scholar
  43. 217.
    S. Swift, J.P. Throup, P. Williams, G.P.C. Salmond, G.S.A.B. Stewart, Quorum sensing: a population–density component in the determination of bacterial phenotype. Trends Biochem. Sci. 21, 214–219 (1996)CrossRefGoogle Scholar
  44. 221.
    R. Thom, Structural Stability and Morphogenesis (W.A. Benjamin, Reading, 1980)Google Scholar
  45. 222.
    T. Tian, K.Burage, Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci. 103, 8372–8377 (2006)Google Scholar
  46. 223.
    A. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)MATHCrossRefGoogle Scholar
  47. 224.
    J. Tyson, The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics (Springer, Berlin, 1976)Google Scholar
  48. 234.
    M. Wieser, Atomic weights of the elements. Pure Appl. Chem. 78, 2051–2066 (2006)CrossRefGoogle Scholar
  49. 235.
    P. Williams, K. Winzer, W.C. Chan, M. Cámara, Look who’s talking: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B 362, 1119–1134 (2007)CrossRefGoogle Scholar
  50. 237.
    A. Winfree, The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ. 61, 661–663 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Johannes Müller
    • 1
  • Christina Kuttler
    • 1
  1. 1.Centre for Mathematical SciencesTechnical University MunichGarchingGermany

Personalised recommendations