Methods and Models in Mathematical Biology pp 483-632 | Cite as

# Reaction Kinetics

Chapter

## Abstract

Chemical and biochemical networks can be viewed as dynamical systems. The properties of these systems can be complex and sometimes also surprising. Examples are enzyme kinetics, cells that interact and react to their environment by means of regulatory pathways, pattern on the skin of cows, leopards or snails are created by means of biochemical reactions, communication is done by biochemistry, to name but a few. All these very different systems can be modelled using the same basic principles.

## Keywords

Periodic Orbit Stationary Point Hopf Bifurcation Boolean Network Slow Manifold
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 5.L. Arnold,
*Random Dynamical Systems*(Springer, Berlin/New York, 2003)Google Scholar - 14.M. Barbarossa, C. Kuttler, A. Fekete, M. Rothballer, A delay model for quorum sensing of
*Pseudomonas putida*. BioSystems**102**, 148–156 (2010)Google Scholar - 18.A. Becskei, L. Serrano, Engineering stability in gene networks by autoregulation. Nature
**405**, 590–593 (2000)CrossRefGoogle Scholar - 21.H. Bisswanger,
*Enzyme Kinetics: Principles and Methods*(Wiley-VCH, Weinheim, 2008)CrossRefGoogle Scholar - 40.H. De Jong, Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol.
**9**, 67–103 (2002)MATHCrossRefGoogle Scholar - 49.O. Diekmann, S.A. van Gils, S.M.V. Lunel, H.O. Walther,
*Delay Equations*(Springer, New York, 1995)MATHCrossRefGoogle Scholar - 51.R. Driver,
*Ordinary and Delay Differential Equations*(Springer, New York/Heidelberg/ Berlin, 1977)MATHCrossRefGoogle Scholar - 58.L. Edelstein-Keshet.
*Mathematical Models in Biology*(SIAM, Philadelphia, 2005)MATHCrossRefGoogle Scholar - 61.S. Ellner, J. Guckenheimer,
*Dynamic Models in Biology*(Princeton University Press, Princeton, 2006)Google Scholar - 62.M. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature
**403**, 335–338 (2000)CrossRefGoogle Scholar - 63.M. Englmann, A. Fekete, C. Kuttler, M. Frommberger, X. Li, I. Gebefügi, P. Schmitt-Kopplin, The hydrolysis of unsubstituted N-acylhomoserine lactones to their homoserine metabolites; Analytical approaches using ultra performance liquid chromatography. J. Chromotogr.
**1160**, 184–193 (2007)CrossRefGoogle Scholar - 67.A. Fekete, C. Kuttler, M. Rothaller, B. Hense, D. Fischer, K. Buddrus-Schiemann, M. Lucio, J. Müller, P. Schmitt-Kopplin, A. Hartmann, Dynamic regulation of N-acyl-homoserine lactone production and degradation in
*Pseudomonas putida*IsoF. FEMS Microbiol. Ecol.**72**, 22–34 (2010)CrossRefGoogle Scholar - 69.R. Field, E. Körös, R. Noyes, Oscillations in chemical systems, part 2. Thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system. J. Am. Chem. Soc.
**94**, 8649–8664 (1972)Google Scholar - 77.C. Gardiner,
*Handbook of Stochastic Methods*(Springer, Berlin/New York, 1983)MATHCrossRefGoogle Scholar - 79.T.S. Gardner, C.E. Cantor, J.J. Collins, Construction of a genetic toggle switch in
*Escherichia coli*. Nature**403**, 339–403 (2000)Google Scholar - 83.A. Gierer, H. Meinhard, A theory of biological pattern formation. Kybernetik
**12**, 30–39 (1972)CrossRefGoogle Scholar - 85.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys.
**22**, 403–434 (1976)MathSciNetCrossRefGoogle Scholar - 87.A. Goldbeter, D.E. Koshland, An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA
**78**, 6840–6844 (1981)MathSciNetCrossRefGoogle Scholar - 88.M. Golubitsky, D. Schaeffer,
*Singularities and Groups in Bifurcation Theory*(Springer, New York, 1985)MATHCrossRefGoogle Scholar - 92.J.-L. Gouzé, Positive and negative circuits in dynamical systems. J. Biol. Syst.
**6**, 11–15 (1998)MATHCrossRefGoogle Scholar - 103.K.P. Hadeler, D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model. J. Math. Anal. Appl.
**95**, 297–303 (1983)MATHMathSciNetCrossRefGoogle Scholar - 115.B. Hense, C. Kuttler, J. Müller, M. Rothballer, A. Hartmann, J. Kreft, Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol.
**5**, 230–239 (2007)CrossRefGoogle Scholar - 124.S. Hooshangi, R. Weiss, The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos
**16**, 026108 (2006)CrossRefGoogle Scholar - 132.F.J. Isaacs, J. Hasty, C.R. Cantor, J.J. Collins, Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci.
**100**, 7714–7719 (2003)CrossRefGoogle Scholar - 137.D. Jones, M. Plank, B. Sleeman,
*Differential Equations and Mathematical Biology*(CRC, Boca Raton, 2010)MATHGoogle Scholar - 138.H. Kaplan, E. Greenberg, Diffusion of autoinducers is involved in regulation of the
*Vibrio fischeri*luminescence system. J. Bacteriol.**163**, 1210–1214 (1985)Google Scholar - 139.S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol.
**22**, 437–467 (1969)MathSciNetCrossRefGoogle Scholar - 153.M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion. J. Differ. Equ.
**174**, 312–368 (2001)MATHMathSciNetCrossRefGoogle Scholar - 155.C. Kuttler, B. Hense, Finetuning for the mathematical modelling of quorum sensing regulation systems. Int. J. Biomath. Biostat.
**1**, 151–168 (2010)Google Scholar - 161.T. Lipniacki, P. Paszek, A. Mariciniak-Czochra, A. Basier, M. Kimmel, Transcriptional stochasticity in gene expression. J. Theor. Biol.
**238**, 348 (2006)CrossRefGoogle Scholar - 167.J. Maybee, J. Quirk, Qualitative problems in matrix theory. SIAM Rev.
**11**, 30–51 (1969)MATHMathSciNetCrossRefGoogle Scholar - 177.J. Müller, C. Kuttler, B. Hense, M. Rothballer, A. Hartmann, Cell-cell communication by quorum sensing and dimension-reduction. J. Math. Biol.
**53**, 672–702 (2006)MATHMathSciNetCrossRefGoogle Scholar - 178.J. Müller, C. Kuttler, B. Hense, S. Zeiser, V. Liebscher, Transcription, intercellular variability and correlated random walk. Math. Biosci.
**216**, 30–39 (2008)MATHMathSciNetCrossRefGoogle Scholar - 179.J. Müller, H. Uecker, Approximating the dynamics of communicating cells in a diffusive medium by ODEs – homogenization with localization. J. Math. Biol.
**65**, 1359–1385 (2012)MATHMathSciNetCrossRefGoogle Scholar - 181.J. Murray,
*Mathematical Biology II: Spatial Models and Biomedical Applications*(Springer, New York, 2003)Google Scholar - 187.W.-L. Ng, B.L. Bassler, Bacterial quorum-sensing network architectures. Ann. Rev. Genet.
**43**, 197–222 (2009)CrossRefGoogle Scholar - 201.M. Renardy, R.C. Rogers,
*An Introduction to Partial Differential Equations*(Springer, New York, 1992)Google Scholar - 204.N. Rosenfeld, J.W. Young, U. Alon, P.S. Swain, M.B. Elowitz, Genetic regulation at the single-cell level. Science
**307**, 1962–1965 (2005)CrossRefGoogle Scholar - 212.H. Smith,
*Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems*(AMS, Providence, 1995)MATHGoogle Scholar - 213.H. Smith,
*An Introduction to Delay Differential Equations with Applications to the Life Sciences*. (Springer, New York, 2011)Google Scholar - 215.H.L. Smith, Periodic orbits of competitive and cooperative systems. J. Differ. Equ.
**65**(3), 361–373 (1986)MATHCrossRefGoogle Scholar - 216.E.H. Snoussi, Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst.
**6**, 3–9 (1998)MATHCrossRefGoogle Scholar - 217.S. Swift, J.P. Throup, P. Williams, G.P.C. Salmond, G.S.A.B. Stewart, Quorum sensing: a population–density component in the determination of bacterial phenotype. Trends Biochem. Sci.
**21**, 214–219 (1996)CrossRefGoogle Scholar - 221.R. Thom,
*Structural Stability and Morphogenesis*(W.A. Benjamin, Reading, 1980)Google Scholar - 222.T. Tian, K.Burage, Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci.
**103**, 8372–8377 (2006)Google Scholar - 223.A. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B
**237**, 37–72 (1952)MATHCrossRefGoogle Scholar - 224.J. Tyson,
*The Belousov-Zhabotinskii Reaction*. Lecture Notes in Biomathematics (Springer, Berlin, 1976)Google Scholar - 234.M. Wieser, Atomic weights of the elements. Pure Appl. Chem.
**78**, 2051–2066 (2006)CrossRefGoogle Scholar - 235.P. Williams, K. Winzer, W.C. Chan, M. Cámara, Look who’s talking: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B
**362**, 1119–1134 (2007)CrossRefGoogle Scholar - 237.A. Winfree, The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ.
**61**, 661–663 (1984)CrossRefGoogle Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2015