Neurocognitive Impairment (NI)

  • Nagi B. Kumar


Survivors of breast, colon, and gynecological cancer are increasingly concerned about the possible cognitive sequelae (called chemo brain or chemo fog) associated with chemotherapy and radiation treatment regimens.


Cancer Survivor Acute Lymphoblastic Leukemia Breast Cancer Survivor Childhood Cancer Cognitive Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jansen CE, Cooper BA, Dodd MJ, Miaskowski CA (2010) A prospective longitudinal study of chemotherapy-induced cognitive changes in breast cancer patients. Support Care Cancer 19(10):1647–1656 [Epub ahead of print]PubMedCrossRefGoogle Scholar
  2. 2.
    Ahles TA, Saykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev 7:192–201CrossRefGoogle Scholar
  3. 3.
    Joshi G, Aluise CD, Cole MP, Sultana R, Pierce WM, Vore M, St Clair DK, Butterfield DA (2010) Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain proteins induced by the anti-cancer drug adriamycin: implications for oxidative stress-mediated chemobrain. Neuroscience 166(3):796–807, Epub 2010 Jan 20PubMedCrossRefGoogle Scholar
  4. 4.
    Fardell JE, Vardy J, Johnston IN, Winocur G (2011) Chemotherapy and cognitive impairment: treatment options. Clin Pharmacol Ther. doi:10.1038/clpt.2011.112 [Epub ahead of print]Google Scholar
  5. 5.
    Falleti MG, Sanfilippo A, Maruff P, Weih L, Phillips KA (2005) The nature and severity of cognitive impairment associated with adjuvant chemotherapy in women with breast cancer: a meta-analysis of the current literature. Brain Cogn 59(1):60–70, Epub 2005 Jun 21. ReviewPubMedCrossRefGoogle Scholar
  6. 6.
    Aziz NM (2007) Cancer survivorship research: state of knowledge, challenges and opportunities. Acta Oncol 46(4):417–432, Review. PMID: 17497308PubMedCrossRefGoogle Scholar
  7. 7.
    Nelson CJ, Nandy N, Roth AJ (2007) Chemotherapy and cognitive deficits: mechanisms, findings, and potential interventions. Palliat Support Care 5(3):273–280, Review. PMID: 17969831PubMedCrossRefGoogle Scholar
  8. 8.
    Boykoff N, Moieni M, Subramanian SK (2009) Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response. J Cancer Surviv 3(4):223–232, PMCID: PMC2775115PubMedCrossRefGoogle Scholar
  9. 9.
    Deprez S, Amant F, Smeets A, Peeters R, Leemans A, Van Hecke W, Verhoeven JS, Christiaens MR, Vandenberghe J, Vandenbulcke M, Sunaert S (2012) Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol 30(3):274–281PubMedCrossRefGoogle Scholar
  10. 10.
    Vearncombe KJ, Rolfe M, Wright M, Pachana NA, Andrew B, Beadle G (2009) Predictors of cognitive decline after chemotherapy in breast cancer patients. J Int Neuropsychol Soc 15(6):951–962PubMedCrossRefGoogle Scholar
  11. 11.
    Reid-Arndt SA (2009) Breast cancer and “chemobrain”: the consequences of cognitive difficulties following chemotherapy and the potential for recovery. Mo Med 106(2):127–131PubMedGoogle Scholar
  12. 12.
    Phillips KM, Jim HS, Small BJ, Laronga C, Andrykowski MA, Jacobsen PB (2011) Cognitive functioning after cancer treatment: a 3-year longitudinal comparison of breast cancer survivors treated with chemotherapy or radiation and noncancer controls. Cancer. doi: 10.1002/cncr.26432. [Epub ahead of print]Google Scholar
  13. 13.
    Jansen C, Miaskowski C, Dodd M, Dowling G, Kramer J (2005) Potential mechanisms for chemotherapy-induced impairments in cognitive function. Oncol Nurs Forum 32(6):1151–1163, ReviewPubMedCrossRefGoogle Scholar
  14. 14.
    Vardy J, Dhillon H (2010) The fog hasn’t lifted on “chemobrain” yet: ongoing uncertainty regarding the effects of chemotherapy and breast cancer on cognition. Breast Cancer Res Treat 123(1):35–37, Epub 2010 Jan 6PubMedCrossRefGoogle Scholar
  15. 15.
    Kurita K, Meyerowitz BE, Hall P, Gatz M (2011) Long-term cognitive impairment in older adult twins discordant for gynecologic cancer treatment. J Gerontol A Biol Sci Med Sci 66(12):1343–1349, 1758–535XPubMedCrossRefGoogle Scholar
  16. 16.
    Vardy JL et al (2010) Cognitive function and fatigue in cancer patients after chemotherapy: a longitudinal cohort study in patients with colorectal cancer (CRC), ICCTF, Cognition and Cancer Conference, New YorkGoogle Scholar
  17. 17.
    Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12(7):703–708, Epub 2011 Feb 25PubMedCrossRefGoogle Scholar
  18. 18.
    Nathan PC, Patel SK, Dilley K et al (2007) Guidelines for identification of, advocacy for, and intervention in neurocognitive problems in survivors of childhood cancer: a report from the Children’s Oncology Group. Arch Pediatr Adolesc Med 161(8):798–806 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  19. 19.
    Robinson KE, Kuttesch JF, Champion JE et al (2010) A quantitative meta-analysis of neurocognitive sequelae in survivors of pediatric brain tumors. Pediatr Blood Cancer 55(3):525–531 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  20. 20.
    Reeves CB, Palmer SL, Reddick WE et al (2006) Attention and memory functioning among pediatric patients with medulloblastoma. J Pediatr Psychol 31(3):272–280 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  21. 21.
    Ellenberg L, Liu Q, Gioia G et al (2009) Neurocognitive status in long-term survivors of childhood CNS malignancies: a report from the Childhood Cancer Survivor Study. Neuropsychology 23(6):705–717 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  22. 22.
    Whitney KA, Lysaker PH, Steiner AR, Hook JN, Estes DD, Hanna NH (2008) Is “chemobrain” a transient state? A prospective pilot study among persons with non-small cell lung cancer. J Support Oncol 6(7):313–321PubMedGoogle Scholar
  23. 23.
    Il’yasova D, Mixon G, Wang F, Marcom PK, Marks J, Spasojevich I, Craft N, Arredondo F, DiGiulio R (2009) Markers of oxidative status in a clinical model of oxidative assault: a pilot study in human blood following doxorubicin administration. Biomarkers 14(5):321–325, PMICD: PMC2716435PubMedCrossRefGoogle Scholar
  24. 24.
    Oeffinger KC, Hudson MM, Landier W (2009) Survivorship: childhood cancer survivors. Prim Care 36(4):743–780, ReviewPubMedCrossRefGoogle Scholar
  25. 25.
    Oeffinger KC, Nathan PC, Kremer LC (2010) Challenges after curative treatment for childhood cancer and long-term follow up of survivors. Hematol Oncol Clin North Am 24(1):129–149PubMedCrossRefGoogle Scholar
  26. 26.
    Ries LAG, Melbert D, Krapcho M et al (2007) SEER cancer statistics review, 1975–2004. National Cancer Institute, BethesdaGoogle Scholar
  27. 27.
    Gurney JG, Severson RK, Davis S, Robison LL (1995) Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 75:2186–2195PubMedCrossRefGoogle Scholar
  28. 28.
    Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51:15–36PubMedCrossRefGoogle Scholar
  29. 29.
    Hewitt M, Weiner SL, Simone JV (2003) Childhood cancer survivorship: improving care and quality of life. National Academy of Sciences, Washington DCGoogle Scholar
  30. 30.
    Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130PubMedCrossRefGoogle Scholar
  31. 31.
    Kumar NB, Allen KA, Riccardi D, Bercu B, Cantor A, Minton S, Balducci L, Jacobsen P (2004) Fatigue, weight gain, lethargy and amenorrhea in breast cancer patients on chemotherapy: is subclinical hypothyroidism the culprit? Breast Cancer Res Treat 83:149–159PubMedCrossRefGoogle Scholar
  32. 32.
    O’Shaughnessy JA, Vukelja SJ, Holmes FA, Savin M, Jones M, Royall D, George M, Von Hoff D (2005) Feasibility of quantifying the effects of epoetin alfa therapy on cognitive function in women with breast cancer undergoing adjuvant or neoadjuvant chemotherapy. Clin Breast Cancer 5(6):439–446PubMedCrossRefGoogle Scholar
  33. 33.
    Seyb KI, Ansar S, Bean J, Michaelis ML (2006) beta-Amyloid and endoplasmic reticulum stress responses in primary neurons: effects of drugs that interact with the cytoskeleton. J Mol Neurosci 28(2):111–123PubMedCrossRefGoogle Scholar
  34. 34.
    Small BJ, Rawson KS, Walsh E, Jim HS, Hughes TF, Iser L, Andrykowski MA, Jacobsen PB (2011) Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors. Cancer 117(7):1369–1376. doi: 10.1002/cncr.25685. Epub 2010 Nov 8PubMedCrossRefGoogle Scholar
  35. 35.
    Abushamaa AM, Sporn TA, Folz RJ (2002) Oxidative stress and inflammation contribute to lung toxicity after a common breast cancer chemotherapy regimen. Am J Physiol Lung Cell Mol Physiol 283(2):L336–L345PubMedGoogle Scholar
  36. 36.
    Mustafa S, Walker A, Bennett G, Peter M (2008) Wigmore5-Fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. Eur J Neurosci 28:323–330PubMedCrossRefGoogle Scholar
  37. 37.
    Monje ML, Vogel H, Masek M, Ligon KL, Fisher PG, Palmer TD (2007) Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 62:515–520PubMedCrossRefGoogle Scholar
  38. 38.
    Joseph JA, Denisova N, Fisher D, Bickford P, Prior R, Cao G (1998) Age-related neurodegeneration and oxidative stress: putative nutritional intervention. Neurol Clin 16(3):747–755PubMedCrossRefGoogle Scholar
  39. 39.
    Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444PubMedCrossRefGoogle Scholar
  40. 40.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147PubMedCrossRefGoogle Scholar
  41. 41.
    de Ruiter MB et al (2010) Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp 32(8):1206–1219; e-pub ahead of print 28 July 2010PubMedCrossRefGoogle Scholar
  42. 42.
    Kreukels BP et al (2006) Effects of high-dose and conventional-dose adjuvant chemotherapy on long-term cognitive sequelae in patients with breast cancer: an electrophysiologic study. Clin Breast Cancer 7:67–78PubMedCrossRefGoogle Scholar
  43. 43.
    Abraham J, Haut MW, Moran MT, Filburn S, Lemiuex S, Kuwabara H (2008) Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer 8:88–91PubMedCrossRefGoogle Scholar
  44. 44.
    Inagaki M et al (2007) Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer 109:146–156PubMedCrossRefGoogle Scholar
  45. 45.
    Cohen ME, Duffner PK (1991) Long-term consequences of CNS treatment for childhood cancer, part I: pathologic consequences and potential for oncogenesis. Pediatr Neurol 7(3):157–163 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  46. 46.
    Kadan-Lottick NS, Brouwers P, Breiger D et al (2009) Comparison of neurocognitive functioning in children previously randomly assigned to intrathecal methotrexate compared with triple intrathecal therapy for the treatment of childhood acute lymphoblastic leukemia. J Clin Oncol 27:5986–5992PubMedCrossRefGoogle Scholar
  47. 47.
    Bostrom BC, Sensel MR, Sather HN et al (2003) Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 101:3809–3817PubMedCrossRefGoogle Scholar
  48. 48.
    Waber DP, Carpentieri SC, Klar N et al (2000) Cognitive sequelae in children treated for acute lymphoblastic leukemia with dexamethasone or prednisone. J Pediatr Hematol Oncol 22:206–213PubMedCrossRefGoogle Scholar
  49. 49.
    Brown RT, Madan-Swain A, Pais R et al (1992) Chemotherapy for acute lymphocytic leukemia: cognitive and academic sequelae. J Pediatr 121(6):885–889 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  50. 50.
    Kadan-Lottick NS, Zeltzer LK, Liu Q et al (2010) Neurocognitive functioning in adult survivors of childhood non-central nervous system cancers. J Natl Cancer Inst 102(12):881–893PubMedCrossRefGoogle Scholar
  51. 51.
    Kadan-Lottick NS, Brouwers P, Breiger D et al (2009) A comparison of neurocognitive functioning in children previously randomized to dexamethasone or prednisone in the treatment of childhood acute lymphoblastic leukemia. Blood 114:1746–1752PubMedCrossRefGoogle Scholar
  52. 52.
    Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 10:2897–2902PubMedGoogle Scholar
  53. 53.
    Hajek T, Kopecek M, Preiss M, Alda M, Hoschl C (2006) Prospective study of hippocampal volume and function in human subjects treated with corticosteroids. Eur Psychiatry 21:123–128PubMedCrossRefGoogle Scholar
  54. 54.
    Butler RW, Hill JM, Steinherz PG et al (1994) Neuropsychologic effects of cranial irradiation, intrathecal methotrexate, and systemic methotrexate in childhood cancer. J Clin Oncol 12(12):2621–2629, [PUBMED Abstract]PubMedGoogle Scholar
  55. 55.
    Kaleita TA, Reaman GH, MacLean WE et al (1999) Neurodevelopmental outcome of infants with acute lymphoblastic leukemia: a Children’s Cancer Group report. Cancer 85(8):1859–1865 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  56. 56.
    Buizer AI, de Sonneville LM, Veerman AJ (2009) Effects of chemotherapy on neurocognitive function in children with acute lymphoblastic leukemia: a critical review of the literature. Pediatr Blood Cancer 52(4):447–454 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  57. 57.
    von der Weid N, Mosimann I, Hirt A et al (2003) Intellectual outcome in children and adolescents with acute lymphoblastic leukaemia treated with chemotherapy alone: age- and sex-related differences. Eur J Cancer 39(3):359–365 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  58. 58.
    Armstrong GT, Conklin HM, Huang S et al (2011) Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol 13(2):223–234 [PUBMED Abstract]PubMedCrossRefGoogle Scholar
  59. 59.
    Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8(11):887–899, Epub 2008 Oct 10PubMedCrossRefGoogle Scholar
  60. 60.
    Myers JS (2010) The possible role of cytokines in chemotherapy-induced cognitive deficits. Adv Exp Med Biol 678:119–123PubMedCrossRefGoogle Scholar
  61. 61.
    Seigers R, Fardell JE (2011) Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci Biobehav Rev 35(3):729–741, Epub 2010 Oct 1PubMedCrossRefGoogle Scholar
  62. 62.
    Hudis CA, Vogel CL, Gralow JR, Williams D, Procrit Study Group (2005) Weekly epoetin alfa during adjuvant chemotherapy for breast cancer: effect on hemoglobin levels and quality of life. Clin Breast Cancer 6(2):132–142PubMedCrossRefGoogle Scholar
  63. 63.
    Sargin D, El-Kordi A, Agarwal A, Müller M, Wojcik SM, Hassouna I, Sperling S, Nave KA, Ehrenreich H (2011) Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice. BMC Biol 9:27PubMedCrossRefGoogle Scholar
  64. 64.
    Massa E, Madeddu C, Lusso MR, Gramignano G, Mantovani G (2006) Evaluation of the effectiveness of treatment with erythropoietin on anemia, cognitive functioning and functions studied by comprehensive geriatric assessment in elderly cancer patients with anemia related to cancer chemotherapy. Crit Rev Oncol Hematol 57(2):175–182PubMedCrossRefGoogle Scholar
  65. 65.
    Mancuso A, Migliorino M, De Santis S, Saponiero A, De Marinis F (2006) Correlation between anemia and functional/cognitive capacity in elderly lung cancer patients treated with chemotherapy. Ann Oncol 17(1):146–150PubMedCrossRefGoogle Scholar
  66. 66.
    Iconomou G, Koutras A, Karaivazoglou K, Kalliolias GD, Assimakopoulos K, Argyriou AA, Ifanti A, Kalofonos HP (2008) Effect of epoetin alpha therapy on cognitive function in anaemic patients with solid tumours undergoing chemotherapy. Eur J Cancer Care (Engl) 17(6):535–541Google Scholar
  67. 67.
    Lower EE, Fleishman S, Cooper A, Zeldis J, Faleck H, Yu Z, Manning D (2009) Efficacy of dexmethylphenidate for the treatment of fatigue after cancer chemotherapy: a randomized clinical trial. J Pain Symptom Manage 38(5):650–662PubMedCrossRefGoogle Scholar
  68. 68.
    Berger MM (2004) Can oxidative damage be treated nutritionally? Clin Nutr 24:172–183CrossRefGoogle Scholar
  69. 69.
    Weis J (2011) Cancer-related fatigue: prevalence, assessment and treatment strategies. Expert Rev Pharmacoecon Outcomes Res 11(4):441–446PubMedCrossRefGoogle Scholar
  70. 70.
    Mehnert A, Scherwath A, Schirmer L, Schleimer B, Petersen C, Schulz-Kindermann F, Zander AR, Koch U (2007) The association between neuropsychological impairment, self-perceived cognitive deficits, fatigue and health related quality of life in breast cancer survivors following standard adjuvant versus high-dose chemotherapy. Patient Educ Couns 66(1):108–118PubMedCrossRefGoogle Scholar
  71. 71.
    Mar Fan HG, Clemons M, Xu W, Chemerynsky I, Breunis H, Braganza S, Tannock IF (2008) A randomized, placebo-controlled, double-blind trial of the effects of d-methylphenidate on fatigue and cognitive dysfunction in women undergoing adjuvant chemotherapy for breast cancer. Support Care Cancer 16(6):577–583, PMID: 17972110PubMedCrossRefGoogle Scholar
  72. 72.
    Ferguson RJ, Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Mott LA (2007) Cognitive-behavioral management of chemotherapy-related cognitive change. Psychooncology 16(8):772–777PubMedCrossRefGoogle Scholar
  73. 73.
    Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472PubMedCrossRefGoogle Scholar
  74. 74.
    Galantino ML, Cannon N, Hoelker T, Quinn L, Greene L (2008) Effects of Iyengar yoga on measures of cognition, fatigue, quality of life, flexibility, and balance in breast cancer survivors: a case series. Rehab Oncol 26:18–27Google Scholar
  75. 75.
    Fardell JE, Vardy J, Shah JD, Johnston IN (2010) Exercise ameliorates oxaliplatin and 5-fluorouracil induced cognitive deficits in laboratory rodents. Cognition and cancer conference, international cognition and cancer taskforce, New York, 8–9 March 2010Google Scholar
  76. 76.
    Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130PubMedCrossRefGoogle Scholar
  77. 77.
    Erickson KI et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039PubMedCrossRefGoogle Scholar
  78. 78.
    Jacobson SA, Sabbagh MN (2008) Donepezil: potential neuroprotective and disease-­modifying effects. Expert Opin Drug Metab Toxicol 4:1363–1369PubMedCrossRefGoogle Scholar
  79. 79.
    Minzenberg MJ, Carter CS (2008) Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology 33:1477–1502PubMedCrossRefGoogle Scholar
  80. 80.
    Repantis D, Schlattmann P, Laisney O, Heuser I (2010) Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res 62:187–206PubMedCrossRefGoogle Scholar
  81. 81.
    Wagner LI, Cella D (2004) Fatigue and cancer: causes, prevalence and treatment approaches. Br J Cancer 91:822–828PubMedGoogle Scholar
  82. 82.
    Rebok GW, Rasmusson DX, Brandt J (1996) Prospects for computerized memory training in normal elderly: effects of practice on explicit and implicit memory tasks. Appl Cogn Psychol 10(3):211–223CrossRefGoogle Scholar
  83. 83.
    Rasmusson DX, Rebok GW, Bylsma FW, Brandt J (1999) Effects of three types of memory training in normal elderly. Aging, Neuropsychol, Cognit 6:56–66CrossRefGoogle Scholar
  84. 84.
    Labouvie-Veif G, Gonda JN (1976) Cognitive strategy training and intellectual performance in the elderly. J Gerontol 31(3):3327–3332Google Scholar
  85. 85.
    Kramer AF, Larish JL, Stayer DL (1995) Training for attentional control in dual task settings: a comparison of young and older adults. J Exp Psychol Appl 1(1):50–76CrossRefGoogle Scholar
  86. 86.
    Schaie KW, Hertzog C, Willis SL, Schulenberg J (1987) Effects of cognitive training on ­primary mental ability structure. Psychol Aging 2(3):233–242PubMedCrossRefGoogle Scholar
  87. 87.
    Ball KK, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, Morris JN, Rebok GW, Smith DM, Tennstedt SL, Unverzagt FW, Willis SL, Advanced Cognitive Training for Independent and Vital Elderly Study Group (2002) Effect of cognitive training interventions with older adults: a randomized controlled trial. J Am Med Assoc 288:2271–2281CrossRefGoogle Scholar
  88. 88.
    Ball KK, Edwards JD, Ross LA (2007) The impact of speed of processing training on cognitive and everyday functions. J Gerontol B Psychol Sci Soc Sci 62B:19–31, PMID: 16019280CrossRefGoogle Scholar
  89. 89.
    Edwards JD, Wadley VG, Myers R, Roenker DL, Cissell GM, Ball KK (2002) Transfer of a speed of processing intervention to near and far cognitive functions. Gerontology 48:329–340PubMedCrossRefGoogle Scholar
  90. 90.
    Edwards JD, Wadley VG, Vance DE, Roenker DL, Ball KK (2005) The impact of speed of processing training on cognitive and everyday performance. Aging Ment Health 9:262–271PubMedCrossRefGoogle Scholar
  91. 91.
    Roenker DL, Cissell GM, Ball KK, Wadley VG, Edwards JD (2003) Speed-of-processing and driving simulator training result in improved driving performance. Hum Factors 45(2):218–233PubMedCrossRefGoogle Scholar
  92. 92.
    Wolinsky FD, Unverzagt FW, Smith DM, Jones R, Stoddard A, Tennstetdt SL (2006) The ACTIVE cognitive training trial and health-related quality of life: protection that lasts for 5 years. J Gerontol A Biol Sci Med Sci 61:1324–1329PubMedCrossRefGoogle Scholar
  93. 93.
    Wolinsky FD, Unverzagt FW, Smith DM, Jones R, Wright E, Tennstetdt SL (2006) The effects of the ACTIVE cognitive training trial on clinically relevant declines in health-related quality of life. J Gerontol A Biol Sci Med Sci 61B(5):S281–S287Google Scholar
  94. 94.
    Fan HG, Park A, Xu W, Yi QL, Braganza S, Chang J, Couture F, Tannock IF (2009) The influence of erythropoietin on cognitive function in women following chemotherapy for breast cancer. Psychooncology 18(2):156–161PubMedCrossRefGoogle Scholar
  95. 95.
    Wald DS, Kasturiratne A, Simmonds M (2010) Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med 123(6):522–527PubMedCrossRefGoogle Scholar
  96. 96.
    Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J Natl Cancer Inst 100(11):773–783PubMedCrossRefGoogle Scholar
  97. 97.
    Greenlee H, Gammon MD, Abrahamson PE, Gaudet MM, Terry MB, Hershman DL, Desai M, Teitelbaum SL, Neugut AI, Jacobson JS (2009) Prevalence and predictors of antioxidant supplement use during breast cancer treatment: the Long Island Breast Cancer Study Project. Cancer 115(14):3271–3282, PMCID:PMC2763503PubMedCrossRefGoogle Scholar
  98. 98.
    Roenker DL, Cissell GM, Ball KK, Wadley VG, Edwards JD (2003) Speed-of-processing and driving simulator training result in improved driving performance. Hum Factors 45(2):218–213. SummerGoogle Scholar
  99. 99.
    Shytle RD, Ehrhart J, Tan J, Vila J, Cole M, Sanberg CD, Sanberg PR, Bickford PC (2007) Oxidative stress of neural, hematopoietic, and stem cells: protection by natural compounds. Rejuvenation Res 10(2):173–178PubMedCrossRefGoogle Scholar
  100. 100.
    Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT (2006) Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease. J Alzheimers Dis 9(4):435–443PubMedGoogle Scholar
  101. 101.
    Shaik YB, Castellani ML, Perrella A, Conti F, Salini V, Tete S, Madhappan B, Vecchiet J, De Lutiis MA, Caraffa A, Cerulli G (2006) Role of quercetin (a natural herbal compound) in allergy and inflammation. J Biol Regul Homeost Agents 20:47–52PubMedGoogle Scholar
  102. 102.
    Ortiz D, Shea TB (2004) Apple juice prevents oxidative stress induced by beta-amyloid in culture. J Alzheimers Dis 6:27–30PubMedGoogle Scholar
  103. 103.
    Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, Taglialatela G, Bickford PC (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18:8047–8055PubMedGoogle Scholar
  104. 104.
    Gemma C, Bickford PC (2007) Interleukin-1beta and caspase-1: players in the regulation of age-related cognitive dysfunction. Rev Neurosci 18(2):137–148PubMedGoogle Scholar
  105. 105.
    Cartford MC, Gemma C, Bickford PC (2002) Eighteen-month-old Fischer 344 rats fed a spinach-enriched diet show improved delay classical eyeblink conditioning and reduced expression of tumor necrosis factor alpha (TNFalpha) and TNFbeta in the cerebellum. J Neurosci 22(14):5813–5816PubMedGoogle Scholar
  106. 106.
    Joseph JA, Shukitt-Hale B, Willis LM (2009) Grape juice, berries, and walnuts affect brain aging and behavior. J Nutr 139(9):1813S–1817SPubMedCrossRefGoogle Scholar
  107. 107.
    Willis LM, Shukitt-Hale B, Joseph JA (2009) Dietary polyunsaturated fatty acids improve cholinergic transmission in the aged brain. Genes Nutr 4(4):309–314, PMCID:PM2775891PubMedCrossRefGoogle Scholar
  108. 108.
    Kumar NB, Krischer JP, Allen K, Riccardi D, Besterman-Dahan K, Salup R, Kang L, Xu P, Pow-Sang J (2007) A phase II randomized, placebo-controlled clinical trial of purified isoflavones in modulating steroid hormones in men diagnosed with prostate cancer. Nutr Cancer 59(2):163–168, PMCID: PMC2435485PubMedCrossRefGoogle Scholar
  109. 109.
    Kumar NB, Krischer JP, Allen K, Riccardi D, Besterman-Dahan K, Salup R, Kang L, Xu P, Pow-Sang J (2007) Safety of purified isoflavones in men with early stage prostate cancer. Nutr Cancer 59(2):169–175, PMCID: PMC2442460PubMedCrossRefGoogle Scholar
  110. 110.
    Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J, Helal M, Salup R, Powsang J (2004) The specific role of isoflavones in reducing prostate cancer risk. Prostate 59(2):141–147PubMedCrossRefGoogle Scholar
  111. 111.
    Kumar NB, Allen KA, Cantor A, Riccardi D, Cox CE (2002) The specific role of isoflavones on estrogen metabolism in pre-menopausal women. Cancer 94(4):1166–1174PubMedCrossRefGoogle Scholar
  112. 112.
    Kumar NB, Besterman-Dahan K, Kang L, Pow-Sang J, Xu P, Allen K, Riccardi D, Krischer JP (2008) Results of a randomized clinical trial of the action of several doses of lycopene in localized prostate cancer: administration prior to radical prostatectomy. Clin Med Urol 1:1–14, PMCID:PMC2846655PubMedGoogle Scholar
  113. 113.
    Kumar NB, Besterman-Dahan K, Kang L, Pow-Sang J, Xu P, Allen K, Riccardi D, Krischer JP (2010) Results of a randomized clinical trial of the action of several doses of isoflavones in localized prostate cancer: administration prior to radical prostatectomy. J Soc Integr Oncol 8(1):3–13PubMedGoogle Scholar
  114. 114.
    Janle EM, Lila MA, Grannan M, Wood L, Higgins A, Yousef GG, Rogers RB, Kim H, Jackson GS, Ho L, Weaver CM (2010) Pharmacokinetics and tissue distribution of 14C-labeled grape polyphenols in the periphery and the central nervous system following oral administration. J Med Food 13:926–933PubMedCrossRefGoogle Scholar
  115. 115.
    Milbury PE, Kalt W (2010) Xenobiotic metabolism and berry flavonoid transport across the blood–brain barrier. J Agric Food Chem 58:3950–3956PubMedCrossRefGoogle Scholar
  116. 116.
    Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8:111–120PubMedCrossRefGoogle Scholar
  117. 117.
    Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, O’Leary JM, Milbury PE (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712PubMedCrossRefGoogle Scholar
  118. 118.
    Prasain JK, Peng N, Dai Y, Moore R, Arabshahi A, Wilson L, Barnes S, Michael WJ, Kim H, Watts RL (2009) Liquid chromatography tandem mass spectrometry identification of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine 16:233–243PubMedCrossRefGoogle Scholar
  119. 119.
    Lin LC, Wang MN, Tseng TY, Sung JS, Tsai TH (2007) Pharmacokinetics of (−)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J Agric Food Chem 55(4):1517–1524PubMedCrossRefGoogle Scholar
  120. 120.
    Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MB (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50:229–234PubMedCrossRefGoogle Scholar
  121. 121.
    Willis LM, Shukitt-Hale B, Joseph JA (2009) Recent advances in berry supplementation and age-related cognitive decline. Curr Opin Clin Nutr Metab Care 12(1):91–94PubMedCrossRefGoogle Scholar
  122. 122.
    Shukitt-Hale B, Cheng V, Joseph JA (2009) Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 12(3):135–140PubMedCrossRefGoogle Scholar
  123. 123.
    Willis LM, Shukitt-Hale B, Joseph JA (2009) Modulation of cognition and behavior in aged animals: role for antioxidant- and essential fatty acid-rich plant foods. Am J Clin Nutr 89(5):1602S–1606S, Review. PMID: 19339395PubMedCrossRefGoogle Scholar
  124. 124.
    Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56(22):10544–10551PubMedCrossRefGoogle Scholar
  125. 125.
    Kumar NB, Kazi A, Smith T, Crocker T, Yu D, Reich RR, Reddy K, Hastings S, Exterman M, Balducci L, Dalton K, Bepler G (2010) Cancer cachexia: traditional therapies and novel molecular mechanism-based approaches to treatment. Curr Treat Options Oncol 11(3–4):107–117. ReviewGoogle Scholar
  126. 126.
    Mazza M, Pomponi M, Janiri L, Bria P, Mazza S (2007) Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: an overview. Prog Neuropsychopharmacol Biol Psychiatry 31:12–26PubMedCrossRefGoogle Scholar
  127. 127.
    Gadoth N (2008) On fish oil and omega-3 supplementation in children: the role of such ­supplementation on attention and cognitive dysfunction. Brain Dev 30:309–312PubMedCrossRefGoogle Scholar
  128. 128.
    Acosta S, Jernberg J, Sanberg CD, Sanberg PR, Small BJ, Gemma C, Bickford PC (2010) NT-020, a natural therapeutic approach to optimize spatial memory performance and increase neural progenitor cell proliferation and decrease inflammation in the aged rat. Rejuvenation Res 13(5):581–588, Epub ahead of print. PMID: 20586644PubMedCrossRefGoogle Scholar
  129. 129.
    Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C (2008) Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer 123(6):1227–1239PubMedCrossRefGoogle Scholar
  130. 130.
    Willis LM, Shukitt-Hale B, Cheng V, Joseph JA (2008) Dose-dependent effects of walnuts on motor and cognitive function in aged rats. Br J Nutr 9:1–5Google Scholar
  131. 131.
    Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N Jr, Ashe KH, Frautschy SA, Cole GM (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43(5):633–645PubMedCrossRefGoogle Scholar
  132. 132.
    Johnson EJ, Schaefer EJ (2006) Potential role of dietary n − 3 fatty acids in the prevention of dementia and macular degeneration. Am J Clin Nutr 83(6 Suppl):1494S–1498SPubMedGoogle Scholar
  133. 133.
    Lim WS, Gammack JK, Van Niekerk J, Dangour AD (2006) Omega 3 fatty acid for the ­prevention of dementia. Cochrane Database Syst Rev 1:CD005379, ReviewPubMedGoogle Scholar
  134. 134.
    Barton D, Loprinzi C (2002) Novel approaches to preventing chemotherapy-induced cognitive dysfunction in breast cancer: the art of the possible. Clin Breast Cancer Suppl 3:S121–S127, ReviewCrossRefGoogle Scholar
  135. 135.
    Flirski M, Sobow T (2005) Biochemical markers and risk factors of Alzheimer’s disease. Curr Alzheimer Res 2:47–64PubMedCrossRefGoogle Scholar
  136. 136.
    Irizarry MC (2004) Biomarkers of Alzheimer disease in plasma. NeuroRx 1:226–234PubMedCrossRefGoogle Scholar
  137. 137.
    Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362PubMedCrossRefGoogle Scholar
  138. 138.
    Munir F, Kalawsky K, Lawrence C, Yarker J, Haslam C, Ahmed S (2011) Cognitive intervention for breast cancer patients undergoing adjuvant chemotherapy: a needs analysis. Cancer Nurs 34(5):385–392PubMedCrossRefGoogle Scholar
  139. 139.
    Balducci L (2010) Anemia, fatigue and aging. Transfus Clin Biol 17(5–6):375–381, Epub 2010 Nov 9. ReviewPubMedCrossRefGoogle Scholar
  140. 140.
    Garratt AM, Ruta DA, Abdalla MI, Buckingham JK, Russell IT (1993) The SF36 health survey questionnaire: an outcome measure suitable for routine use within the NHS? BMJ 306(6890):1440–1444PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations