Radiometric Normalization

  • H. B. Mitchell


The subject of this chapter is radiometric calibration, or normalization, which we define as the conversion of all sensor values to a common scale. This is the fourth and last function listed in Sect. 4.1 which is required for the formation of a common representational format. Although conceptually the radiometric normalization and semantic alignment are very different, we often use the same probabilistic transformation for both semantic alignment and radiometric normalization. The reader should be careful not to confuse the two terms.

In many multi-sensor data fusion applications radiometric normalization is the primary fusion algorithm. In Table 8.1 we list some of these applications together with the classification of the type of fusion algorithm involved.


Virtual Screening Syndromic Surveillance Isotonic Regression Platt Calibration Isotonic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baggerly, K.A.: Probability binning and testing agreement between multivariate immunofluorescence histogram extending the chi-squared test. Cytometry 45, 141–150 (2001)CrossRefGoogle Scholar
  2. 2.
    Baradez, M.-O., McGuckin, C.P., Forraz, N., Pettengell, R., Hope, A.: Robust and automated unimodal histogram thresholding and potential applications. Patt. Recogn. 37, 1131–1148 (2004)CrossRefGoogle Scholar
  3. 3.
    Behloul, F., Lelieveldt, B.P.E., Boudraa, A., Janier, M., Revel, D., Reiber, J.H.C.: Neuro-fuzzy systems for computer-aided myocardial viability assessment. IEEE Trans. Med. Imag. 20, 1302–1313 (2001)CrossRefGoogle Scholar
  4. 4.
    Bender, A., Glen, R.C.: Molecular similarity: a key technique in molecular informatics. Org. Biomol. Chem. 2, 3204–3218 (2004)CrossRefGoogle Scholar
  5. 5.
    Bhat, D., Nayar, S.: Ordinal measures for image correspondence. IEEE Trans. Patt. Analy. Mach. Intell. 20, 415–423 (1998)CrossRefGoogle Scholar
  6. 6.
    Birchfield, S.T., Rangarajan, S.: Spatial histograms for region-based tracking. ETRI Jrnl. 29, 697–699 (2007)CrossRefGoogle Scholar
  7. 7.
    Birge, L., Rozenholc, Y.: How many bins should be put in a regular histogram. Euro. Series Appl. Indust. Math. Prob. Stat. 10, 24–45 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bruzzone, L., Prieto, D.F.: Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Rem. Sens. 38, 1171–1182 (2000)CrossRefGoogle Scholar
  9. 9.
    Celebri, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Approximate lesion localization in demoscopy images. Skin Res. Tech. 15, 314–322 (2009)CrossRefGoogle Scholar
  10. 10.
    Cha, S.-H.: Taxonomy of nominal type histogram distance measures. In: Am. Conf. App. Math., pp. 325–330 (2008)Google Scholar
  11. 11.
    Choi, S.-S., Cha, S.-H., Tappert, C.C.: A survey of binary similarity and distance measures. Syst. Cyber Inform. 8, 43–48 (2010)Google Scholar
  12. 12.
    Cohen, I., Goldszmidt, M.: Properties and Benefits of Calibrated Classifiers. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 125–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Coudray, N., Buessler, J.-L., Urban, J.-P.: Robust threshold estimation for images with unimodal histograms. Patt. Recogn. Lett. 31, 1010–1019 (2010)CrossRefGoogle Scholar
  14. 14.
    Delon, J.: Midway image equalization. Math. Imag. Vis. 21, 119–134 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gilchrist, J.M., Jerwood, D., Ismaiel, H.S.: Comparing and unifying slope estimates across pyschometric function models. Perception and Psychophysics 67, 1289–1303 (2005)CrossRefGoogle Scholar
  16. 16.
    Ginn, C.M.R., Turner, D.B., Willett, P., Ferguson, A.M., Heritage, T.W.: Similarity searching in files of three-dimensional chemical structures: evaluation of the EVA descriptor and combination of rankings using data fusion. Chem. Inform. Comp. Sci. 37, 23–37 (1997)CrossRefGoogle Scholar
  17. 17.
    Gong, L., Wang, T., Liu, F., Chen, G.: A lie group based spatiogram similarity measure. In: Proc. Int. Conf. Multimedia Expo., ICME (2009)Google Scholar
  18. 18.
    Henning, K.J.: What is syndromic surveillance? In: Syndromic Surveillance: Reports from a National Conference (2003)Google Scholar
  19. 19.
    Holliday, J.D., Hu, C.-Y., Willett, P.: Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D Fragment bit-strings. Combinatorial Chem. Comp. Sci. 42, 375–385 (2001)Google Scholar
  20. 20.
    Hongzhi, W., Ying, D.: An improved image segmentation algorithm based on Otsu method. In: Proc. SPIE, vol. 6625 (2008)Google Scholar
  21. 21.
    Ivanov, O., Wagner, M.M., Chapman, W.W., Olszewski, R.T.: Accuracy of three classifiers of acute gastrointestinal syndrome for syndromic surveillance. In: Proc. AMIA Symp., pp. 345–349 (2002)Google Scholar
  22. 22.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Patt. Recogn. 38, 2270–2285 (2005)CrossRefGoogle Scholar
  23. 23.
    Lin, H.-T., Lin, C.-J., Weng, R.C.: A note on Platt’s probabilistic outputs for support vector machine. In: Tech Rept. Dept. Comp. Sci. Inform. Engng., National Taiwan University (2003)Google Scholar
  24. 24.
    Ma, Y., Gu, X., Wang, Y.: Histogram similarity measure using variable bin size distance. Comp. Vis. Image Under. 114, 981–989 (2010)CrossRefGoogle Scholar
  25. 25.
    Madden, C., Cheng, E.D., Piccardi, M.: Tracking people across disjoint camera views by illumination-tolerant appearance representation. Mach. Vis. Appl. 18, 233–247Google Scholar
  26. 26.
    Milgram, J., Cheriet, M., Sabourin, R.: Estimating accurate multi-class probabilities with support vector machine. In: Int. J. Conf. Neural Network IJCNN, pp. 1906–1911 (2005)Google Scholar
  27. 27.
    Monwar, M.M., Gavrilova, M.L.: Multimodal biometric system using rank-level fusion approach. IEEE Trans. Sys. Man. Cybern. 39B, 867–878 (2009)Google Scholar
  28. 28.
    Nelson, T., Wilson, H.G., Boots, B., Wulder, M.A.: Use of ordinal conversion for radiometric normalization and change detection. Int. J. Rem. Sens. 26, 535–541 (2005)CrossRefGoogle Scholar
  29. 29.
    O’Conaire, C., O’Connor, N., Cooke, E., Smeaton, A.: Detection thresholding using mutual information. In: Proc. 1st Int. Conf. Cmp. Vis. Theory App., vol. 2, pp. 408–415 (2006)Google Scholar
  30. 30.
    O’Conaire, C., O’Connor, N.E., Smeaton, A.: An improved spatiogram similarity measure for robust object localization. In: Int. Conf. Acc. Speech Sig. Proc. ICASSP (2007)Google Scholar
  31. 31.
    O’Conaire, C., O’Connor, N.E., Smeaton, A.: Thermo-visual feature fusion for object tracking using multiple spatiogram trackers. Mach. Vis. Appl. 19, 483–494 (2008)CrossRefGoogle Scholar
  32. 32.
    Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola, A.J., Bartlett, P., Scholkopf, B., Schurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)Google Scholar
  33. 33.
    Ridler, T., Calvard, S.: Picture thresholding using an iterative selection method. IEEE Sys. Man Cyber. 8, 630–632 (1978)CrossRefGoogle Scholar
  34. 34.
    Roederer, M., Treister, A., Moore, W., Herzenberg, L.A.: Probability binning comparison: a metric for quantitating univariate distribution differences. Cytometry 45, 37–46 (2001)CrossRefGoogle Scholar
  35. 35.
    Rosin, P.L.: Unimodal thresholding. Patt. Recogn. 34, 2083–2096 (2001)zbMATHCrossRefGoogle Scholar
  36. 36.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth movers distance as a metric for image retrieval. Int. J. Comp. Vis. 40, 99–121 (2000)zbMATHCrossRefGoogle Scholar
  37. 37.
    Dos Santosa, D.A., Deutsch, R.: The positive matching index: a new similarity measure with optimal characteristics. Patt. Recogn. Lett. 31, 1570–1576 (2010)CrossRefGoogle Scholar
  38. 38.
    Scherer, S., Werth, P., Pinz, A.: The discriminatory power of ordinal measures - towards a new coefficient. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (1999)Google Scholar
  39. 39.
    Sevcenco, A.-M., Lu, W.-S.: Perfect histogram matching PCA for face recognition. Multidimen. Syst. Sig. Process. 21, 213–229 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Seggin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Elect. Imag. 13, 146–165 (2004)CrossRefGoogle Scholar
  41. 41.
    Suh, Y., Ji, M., Kim, H.: Probabilistic class histogram equalization for robust speech recognition. IEEE Sig. Proc. Lett. 14, 287–290 (2007)CrossRefGoogle Scholar
  42. 42.
    Willett, P.: Chemical similarity searching. Chem. Inform. Comp. Sci. 38, 983–996 (1998)CrossRefGoogle Scholar
  43. 43.
    Willett, P.: Textual and chemical information processing: different domains but similar algorithms. Inform. Res. 5(2) (2000)Google Scholar
  44. 44.
    Willett, P.: Structural biology in drug metabolism and drug discovery. Biochem. Soc. Trans., Part 3 31, 603–606 (2003)CrossRefGoogle Scholar
  45. 45.
    Wilton, D., Willet, P., Lawson, K., Mullier, G.: Comparison of ranking methods for virtual screening in lead-discovery programmes. Chem. Inform. Comp. Sci. 43, 469–474 (2003)CrossRefGoogle Scholar
  46. 46.
    Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multiclass classification by pairwise coupling. Mach. Learn. Res. 5, 975–1005 (2004)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Xu, X., Xu, S., Jin, L., Song, E.: Characteristic analysis of Otsu threshold and its applications. Patt. Recogn. Lett. 32, 956–961 (2011)CrossRefGoogle Scholar
  48. 48.
    Xue, J.-H., Titterington, M.: Median-based image thresholds. Preprint (2010)Google Scholar
  49. 49.
    Zadrozny, B.: Reducing multiclass to binary by coupling probability estimates. In: Neural Inf. Process. Sys. Conf., British Columbia, Vancouver (1999)Google Scholar
  50. 50.
    Zadrozny, B.: Policy mining: learning decision policies from fixed sets of data. PhD thesis, University of California, San Diego (2003)Google Scholar
  51. 51.
    Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass probability estimates. In: SIGKDD 2002, Edmonton, Alberta, Canada (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Section 3424IAI Elta Electronics Ind. Ltd.AshdodIsrael

Personalised recommendations