Semantic Alignment

  • H. B. Mitchell


The subject of this chapter is semantic alignment. This is the conversion of multiple input data or measurements which do not refer to the same object, or phenomena, to a common object or phenomena. The reason for performing semantic alignment is that different inputs can only be fused together if the inputs refer to the same object or phenomena. In general, if the observations have been made by sensors of the same type, then the observations should refer to the same object or phenomena. In this case, no semantic alignment is required, although radiometric normalization may be required.


Cluster Algorithm Spectral Cluster Cluster Ensemble Identity Vector Spectral Cluster Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Patt. Anal. Mach. Intell. 24, 509–522 (2002)CrossRefGoogle Scholar
  2. 2.
    Brand, M., Huang, K.: A unifying theorem for spectral embedding and clustering. In: Ninth Int. Conf. Art Intell. Stat. (2002)Google Scholar
  3. 3.
    Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19, 1090–1099 (2003)CrossRefGoogle Scholar
  4. 4.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. IEEE Trans. Patt. Anal. Mach. Intell. 26, 214–225 (2004)CrossRefGoogle Scholar
  5. 5.
    Fred, A.L.N.: Finding Consistent Clusters in Data Partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumulation. IEEE Trans. Patt. Anal. Mach. Intell. 27, 835–850 (2005)CrossRefGoogle Scholar
  7. 7.
    Franek, L., Abdala, D.D., Vega-Pons, S., Jiang, X.: Image Segmentation Fusion Using General Ensemble Clustering Methods. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 373–384. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: clustering ensembles techniques. World Acad. Sci. Eng. Tech. 50, 636–645 (2009)Google Scholar
  9. 9.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Patt. Recogn. Lett. 31, 651–666 (2010)CrossRefGoogle Scholar
  10. 10.
    Jia, J., Liu, B., Jiao, L.: Soft spectral clustering ensemble applied to image segmentation. Front. Comp. Sci. China 5, 66–78 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, T., Ogihara, M., Ma, S.: On combining multiple clusterings: an overview and a new perspective. Appl. Intell. (2010)Google Scholar
  12. 12.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics 52, 7–21 (2005)CrossRefGoogle Scholar
  13. 13.
    Mignotte, M.: Segmentation by fusion of histogram-based K-means clusters in different color spaces. IEEE Trans. Im. Proc. 17, 780–787 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv. Neural Inform. Proc. Sys. 14, 849–856 (2001)Google Scholar
  15. 15.
    Scott, C., Nowak, R.: Robust contour matching via the order preserving assignment problem. IEEE Trans. Image Process. 15, 1831–1838 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Mach. Learn. Res. 3, 583–617 (2002)MathSciNetGoogle Scholar
  17. 17.
    Vega-Pons, S., Ruiz-Shulcloper, J.: Int. J. Patt. Recogn. Art Intell. 25, 337–372 (2011)CrossRefGoogle Scholar
  18. 18.
    A comparison of spectral clustering algorithms, Tech. Rept UW-CSE-03-05-01. Dept. Comp. Sci. Eng., Univ. Washington (2003)Google Scholar
  19. 19.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comp. 17, 395–416 (2007)CrossRefGoogle Scholar
  20. 20.
    Wang, Z., Gao, C., Tian, J., Lia, J., Chen, X.: Multi-feature distance map based feature detection of small infra-red targets with small contrast in image sequences. In: Proc. SPIE, vol. 5985 (2005)Google Scholar
  21. 21.
    Wang, X., Yang, C., You, J.: Spectral aggregation for clustering ensemble. In: Proc. Int. Conf. Patt. Recogn., pp. 1–4 (2008)Google Scholar
  22. 22.
    Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Adv. Neural. Inform. Proc. Sys. 17, 1601–1608 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Section 3424IAI Elta Electronics Ind. Ltd.AshdodIsrael

Personalised recommendations