Advertisement

Lazy Auctions for Multi-robot Collision Avoidance and Motion Control under Uncertainty

  • Jan-P. Calliess
  • Daniel Lyons
  • Uwe D. Hanebeck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7068)

Abstract

We present an auction-flavored multi-robot planning mechanism where coordination is to be achieved on the occupation of atomic resources modeled as binary inter-robot constraints. Introducing virtual obstacles, we show how this approach can be combined with particle-based obstacle avoidance methods, offering a decentralized, auction-based alternative to previously established centralized approaches for multi-robot open-loop control. We illustrate the effectiveness of our new approach by presenting simulations of typical spatially-continuous multi-robot path-planning problems and derive bounds on the collision probability in the presence of uncertainty.

Keywords

Path Planning Collision Probability Chance Constraint Multiple Robot Priority Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennewitz, M., Burgard, W., Thrun, S.: Exploiting constraints during prioritized path planning for teams of mobile robots. In: IROS (2001)Google Scholar
  2. 2.
    Bennewitz, M., Burgard, W., Thrun, S.: Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots. In: Robotics and Autonomous Systems (2002)Google Scholar
  3. 3.
    Bererton, C., Gordon, G., Thrun, S., Khosla, P.: Auction mechanism design for multi-robot coordination. In: NIPS (2003)Google Scholar
  4. 4.
    Bererton, C.A.: Multi-Robot Coordination and Competition Using Mixed Integer and Linear Programs. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2006)Google Scholar
  5. 5.
    Blackmore, L., Ono, M., Bektassov, A., Williams, B.C.: A probabilistic particle approach to optimal, robust predictive control. IEEE Trans. on Robotics (2010)Google Scholar
  6. 6.
    Calliess, J., Gordon, G.J.: No-regret learning and a mechanism for distributed multiagent planning. In: Proc. of AAMAS (2008)Google Scholar
  7. 7.
    Calliess, J., Lyons, D., Hanebeck, U.: Lazy auctions for multi-robot collision avoidance and motion control under uncertainty. Technical Report PARG-01-11, Dept. of Engineering Science, University of Oxford (2011)Google Scholar
  8. 8.
    Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dash, R.K., Jennings, N.R., Parkes, D.C.: Computational mechanism design: A call to arms. IEEE Int. Syst. (2003)Google Scholar
  10. 10.
    de Vries, S., Vohra, R.: Combinatorial auctions: A survey. INFORMS J. Computing (2003)Google Scholar
  11. 11.
    Dias, M.B., Zlot, R.M., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and analysis. Proceedings of the IEEE (2006)Google Scholar
  12. 12.
    Erdmann, M.A., Lozano-Perez, T.: On multiple moving objects. Algorithmica (1987)Google Scholar
  13. 13.
    Farinelli, A., Rogers, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS (2008)Google Scholar
  14. 14.
    Farinelli, A., Rogers, A., Jennings, N.: Coordination using the max-sum algorithm. In: IJCAI 2009 Workshop on Distributed Constraint Reasoning, DCR (2009)Google Scholar
  15. 15.
    Gerkey, B., Mataric, M.: Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation 19(5), 758–768 (2002)CrossRefGoogle Scholar
  16. 16.
    Guestrin, C., Gordon, G.: Distributed planning in hierarchical factored mdps. In: UAI (2002)Google Scholar
  17. 17.
    Koenig, S., Keskinocak, P., Tovey, C.A.: Progress on agent coordination with cooperative auctions. In: AAAI (2010)Google Scholar
  18. 18.
    Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P., Koenig, S., Kleywegt, A., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Int. Conf. on Robotics: Science and Systems (2005)Google Scholar
  19. 19.
    Nishi, T., Ando, M., Konishi, M.: Distributed route planning for multiple robots using an augmented lagrangian decomposition and coordination technique. IEEE Trans. on Robotics (2005)Google Scholar
  20. 20.
    Nishi, T., Ando, M., Konishi, M.: Experimental studies on a local rescheduling procedure for dynamic routing of autonomous decentralized agv systems. Robotics and Computer-Integr. Manuf. (2006)Google Scholar
  21. 21.
    Sycara, K., Velagapudi, P., Scerri, P.: Decentralized prioritized planning in large multirobot teams. In: IROS 2010 (2010)Google Scholar
  22. 22.
    Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Decentralized cooperative policy for conflict resolution in multi-vehicle systems. IEEE Trans. on Robotics 23(6), 1170–1183 (2007)CrossRefGoogle Scholar
  23. 23.
    Parsons, D., Canny, J.: A motion planner for multiple mobile robots. In: ICRA (1990)Google Scholar
  24. 24.
    Sandholm, T.: Algorithm for optimal winner determination on combinatorial auctions. Artif. Int. (2002)Google Scholar
  25. 25.
    Schouwenaars, T., De Moor, B., Feron, E., How, J.: Mixed integer programming for multi-vehicle path planning. In: European Control Conference (2001)Google Scholar
  26. 26.
    Stentz, A., Dias, M.B.: A free market architecture for coordinating multiple robots. Technical Report CMU-RI-TR-99-42, Carnegie Mellon (1999)Google Scholar
  27. 27.
    Whittle, P.: A multivariate generalization of tchebichev’s inequality. Quarterly Journal of Mathem. (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jan-P. Calliess
    • 1
  • Daniel Lyons
    • 2
  • Uwe D. Hanebeck
    • 2
  1. 1.Dept. of Engineering ScienceUniversity of OxfordUK
  2. 2.Intelligent Sensor-Actuator-Systems LabKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations