Skip to main content

Flood Disaster Mitigation: A Real-World Challenge Problem for Multi-agent Unmanned Surface Vehicles

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7068))

Abstract

As we advance the state of technology for robotic systems, there is a need for defining complex real-world challenge problems for the multi-agent/robot community to address. A well-defined challenge problem can motivate researchers to aggressively address and overcome core domain challenges that might otherwise take years to solve. As the focus of multi-agent research shifts from the mature domains of UGV and UAVs to USVs, there is a need for outlining well-defined and realistic challenge problems. In this position paper, we define one such problem, flood disaster mitigation. The ability to respond quickly and effectively to disasters is essential to saving lives and limiting the scope of damage. The nature of floods dictates the need for a fast-deployable fleet of low-cost and small autonomous boats that can provide situational awareness (SA), damage assessment and deliver supplies before more traditional emergency response assets can access affected areas. In addition to addressing an essential need, the outlined application provides an interesting challenge problem for advancing fundamental research in multi-agent systems (MAS) specific to the USV domain. In this paper, we define a technical statement of this MAS challenge problem based and outline MAS specific technical constraints based on the associated real-world issues. Core MAS sub-problems that must be solved for this application include coordination, control, human interaction, autonomy, task allocation, and communication. This problem provides a concrete and real-world MAS application that will bring together researchers with a diverse range of expertise to develop and implement the necessary algorithms and mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F.: Multi-robot cooperation in the martha project. Robotics & Automation Magazine 5(1), 36–47 (1998)

    Article  Google Scholar 

  2. Alami, R., da Costa Bothelho, S.S.: Plan-Based Multi-robot Cooperation. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds.) Dagstuhl Seminar 2001. LNCS (LNAI), vol. 2466, pp. 1–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Alami, R., Ingrand, F., Qutub, S.: A scheme for coordinating multi-robot planning activities and plans execution. In: Proceedings of the Thirteenth European Conference on Artificial Intelligence, ECAI 1998 (1998)

    Google Scholar 

  4. Bernstein, D.S., Zilberstein, S., Immerman, N.: The complexity of decentralized control of markov decision processes. In: Proc. of UAI 2000, pp. 32–37 (2000)

    Google Scholar 

  5. Bernardine Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  6. Donmez, B., Pina, P., Cummings, M.L.: Evaluation criteria for human-automation performance metrics. In: Proceedings of Performance Metrics for Intelligent Systems Workshop (2008)

    Google Scholar 

  7. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: Seventh International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2008), pp. 639–646 (May 2008)

    Google Scholar 

  8. Fitzpatrick, S., Meetrens, L.: Distributed Coordination through Anarchic Optimization. In: Distributed Sensor Networks A multiagent perspective, pp. 257–293. Kluwer Academic (2003)

    Google Scholar 

  9. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artif. Life 5(2), 173–202 (1999)

    Article  Google Scholar 

  10. Hollinger, G., Singh, S.: Towards experimental analysis of challenge scenarios in robotics. In: 12th International Symposium on Experimental Robotics (December 2010)

    Google Scholar 

  11. Jiang, D., Pang, Y., Qin, Z.: Coordinated control of multiple autonomous underwater vehicle system. In: 2010 8th World Congress on Intelligent Control and Automation (WCICA), pp. 4901–4906 (July 2010)

    Google Scholar 

  12. Jones, E., Bernardine Dias, M., Stentz, A.: Learning-enhanced market-based task allocation for oversubscribed domains. In: International Conference on Intelligent Robots and Systems, IROS 2007 (November 2007)

    Google Scholar 

  13. Joyeux, S., Alami, R., Lacroix, S., Philippsen, R.: A plan manager for multi-robot systems. International Journal of Robotics Research 28, 220–240 (2009)

    Article  MATH  Google Scholar 

  14. Kannan, B., Parker, L.E.: Metrics for quantifying system performance in intelligent, fault-tolerant multi-robot teams. In: International Conference on Intelligent Robotics and Systems (November 2007)

    Google Scholar 

  15. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: Proceedings of the Ninth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, ON, Canada, pp. 133–140 (2010)

    Google Scholar 

  16. Koes, M., Nourbakhsh, I., Sycara, K.: Heterogeneous multirobot coordination with spatial and temporal constraints. In: Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI), pp. 1292–1297. AAAI Press (June 2005)

    Google Scholar 

  17. Koes, M., Sycara, K., Nourbakhsh, I.: A constraint optimization framework for fractured robot teams. In: AAMAS 2006: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 491–493. ACM, New York (2006)

    Chapter  Google Scholar 

  18. Ayorkor Korsah, G., Kannan, B., Fanaswala, I., Bernardine Dias, M.: Improving market-based task allocation with optimal seed scheduling. In: Intelligent Autonomous Systems 11 (IAS 2011), pp. 249–259 (August 2010)

    Google Scholar 

  19. Ayorkor Korsah, G., Stentz, A., Bernardine Dias, M., Fanaswala, I.: Optimal vehicle routing and scheduling with precedence constraints and location choice. In: ICRA 2010 Workshop on Intelligent Transportation Systems (May 2010)

    Google Scholar 

  20. Ayorkor Korsah, G., Kannan, B., Browning, B., Bernardine Dias, M.: xbots: An approach to generating and executing optimal multi-robot plans with constraints. Technical Report CMU-RI-TR-11-25, Robotics Institute, Pittsburgh, PA (August 2011)

    Google Scholar 

  21. Lagoudakis, M., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig, S., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Proceedings of the International Conference on Robotics: Science and Systems, pp. 343–350 (2005)

    Google Scholar 

  22. Miller, D.P., Winton, C., Weinberg, J.: Beyond botball. In: AAAI Spring Symposium, Robots and Robot Venues: Resources for AI Education (2007)

    Google Scholar 

  23. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans with temporal uncertainty. In: IJCAI, pp. 494–502 (2001)

    Google Scholar 

  24. Murphy, R.R., Steimle, E., Griffin, C., Cullins, C., Hall, M., Pratt, K.: Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane wilma. Journal of Field Robotics 25(3), 164–180 (2008)

    Article  Google Scholar 

  25. Parker, L.E., Howard, A.: Experiments with a large heterogeneous mobile robot team: Exploration, mapping, deployment and detection. International Journal of Robotics Research 25, 431–447 (2006)

    Article  Google Scholar 

  26. Rahwan, T., Ramchurn, S., Jennings, N., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. Journal of Artificial Intelligence Research (JAIR) 34, 521–567 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Scerri, P., Farinelli, A., Okamoto, S., Tambe, M.: Allocating tasks in extreme teams. In: AAMAS 2005: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 727–734 (2005)

    Google Scholar 

  28. United Nations University. Two Billion People Vulnerable to Floods by 2050; Number Expected to Double or More in Two Generations Due to Climate Change, Deforestation, Rising Seas, Population Growth. United Nations University (2004)

    Google Scholar 

  29. Urmson, C., Anhalt, J., Bae, H., Bagnell, J.A(D.), Baker, C., Bittner, R.E., Brown, T., Clark, M.N., Darms, M., Demitrish, D., Dolan, J.M., Duggins, D., Ferguson, D., Galatali, T., Geyer, C.M., Gittleman, M., Harbaugh, S., Hebert, M., Howard, T., Kolski, S., Likhachev, M., Litkouhi, B., Kelly, A., McNaughton, M., Miller, N., Nickolaou, J., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Sadekar, V., Salesky, B., Seo, Y.-W., Singh, S., Snider, J.M., Struble, J.C., Stentz, A(T.), Taylor, M., Whittaker, W(R.) L., Wolkowicki, Z., Zhang, W., Ziglar, J.: Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics Special Issue on the 2007 DARPA Urban Challenge, Part I 25(1), 425–466 (2008)

    Google Scholar 

  30. Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez, A., Harbaugh, S., Johnston, J., Kato, H., Koon, P.L., Messner, W., Miller, N., Mosher, A., Peterson, K., Ragusa, C., Ray, D., Smith, B.K., Snider, J.M., Spiker, S., Struble, J.C., Ziglar, J., Whittaker, W(R.) L.: A robust approach to high-speed navigation for unrehearsed desert terrain. Journal of Field Robotics 23(1), 467–508 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scerri, P. et al. (2012). Flood Disaster Mitigation: A Real-World Challenge Problem for Multi-agent Unmanned Surface Vehicles. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds) Advanced Agent Technology. AAMAS 2011. Lecture Notes in Computer Science(), vol 7068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27216-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27216-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27215-8

  • Online ISBN: 978-3-642-27216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics