Designing the HRTeam Framework: Lessons Learned from a Rough-and-Ready Human/Multi-Robot Team

  • Elizabeth Sklar
  • A. Tuna Ozgelen
  • J. Pablo Munoz
  • Joel Gonzalez
  • Mark Manashirov
  • Susan L. Epstein
  • Simon Parsons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7068)

Abstract

In this workshop paper, we share the design and on-going implementation of our HRTeam framework, which is constructed to support multiple robots working with a human operator in a dynamic environment. The team is comprised of one human plus a heterogeneous set of inexpensive, limited-function robots. Although each individual robot has restricted mobility and sensing capabilities, together the team members constitute a multi-function, multi-robot facility. We describe low-level system architecture details and explain how we have integrated a popular robotic control and simulation environment into our framework to support application of multi-agent techniques in a hardware-based environment. We highlight lessons learned regarding the integration of multiple varying robot platforms into our system, from both hardware and software perspectives. Our aim is to generate discussion amongst multi-robot researchers concerning issues that are of particular interest and present particular difficulties to the multi-robot systems community.

Keywords

Central Server Task Allocation Multiple Robot Operator Interface Robot Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J.A., Rani, P., Sarkar, N.: Mixed initiative interaction and robotic sys. In: Wkshp on Supervisory Control of Learning and Adaptive Sys, Tech Rept WS-04-10 (2004)Google Scholar
  2. 2.
    Alami, R., Robert, F., Ingrand, F., Suzuki, S.: Multi-robot cooperation through incremental plan-merging. In: Proc. of the IEEE Conference on Robotics and Automation (1995)Google Scholar
  3. 3.
    Andrade-Cetto, J., Vidal-Calleja, T., Sanfeliu, A.: Multirobot C-SLAM: Simultaneous localization, control and mapping. In: Proc. of the ICRA Workshop on Network Robot Systems (2005)Google Scholar
  4. 4.
    Atay, N., Bayazit, B.: Emergent task allocation for mobile robots. In: Proc. of Robotics: Science and Systems Conference (2007)Google Scholar
  5. 5.
    Barlow, G., Henderson, T., Nelson, A., Grant, E.: Dynamic leadership protocol for S-Nets. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (2004)Google Scholar
  6. 6.
    Bhattacharya, S., Candido, S., Hutchinson, S.: Motion strategies for surveillance. In: Proc. of Robotics: Science and Systems Conference (2007)Google Scholar
  7. 7.
    Bhattacharya, S., Hutchinson, S.: Approximation schemes for two-player pursuit evasion games with visibility constraints. In: Proc. of Robotics: Science and Systems Conference (2008)Google Scholar
  8. 8.
    Blank, D., Kumar, D., Meeden, L., Yanco, H.: Pyro: A python-based versatile programming environment for teaching robotics. ACM Journal on Educational Resources in Computing, JERIC (2005)Google Scholar
  9. 9.
    Breazeal, C.: Toward sociable robotss. Robotics and Autonomous Systems 42 (2003)Google Scholar
  10. 10.
    Breazeal, C., Scassellati, B.: Robots that imitate humans. TRENDS in Cognitive Sciences 6(11) (2002)Google Scholar
  11. 11.
    Brumitt, B.L., Stentz, A.: Dynamic mission planning for multiple mobile robots. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (1996)Google Scholar
  12. 12.
    Burke, J.L., Murphy, R.R.: Human-robot interaction in usar technical search: Two heads are better than one. In: Intl. Workshop on Robot and Human Interactive Comm. (2004)Google Scholar
  13. 13.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (1986)Google Scholar
  14. 14.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: antecedents and directions. Autonomous Robots 4(1) (1997)Google Scholar
  15. 15.
    Carbonell, J.R.: Mixed-initiative man-computer instructional dialogues. Tech. Rep. 1971, Bolt Beranek and Newman, Inc. (1971)Google Scholar
  16. 16.
    Chaimowicz, L., Kumar, V., Campos, F.: A paradigm for dynamic coordination of multiple robots. Autonomous Robots 17(1) (2004)Google Scholar
  17. 17.
    Crasar: (access October 20, 2010), http://crasar.org
  18. 18.
    Dautenhahn, K.: A Paradigm Shift in Artificial Intelligence: Why Social Intelligence Matters in the Design and Development of Robots with Human-Like Intelligence. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 288–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Dedeoglu, G., Sukhatme, G.S.: Landmark-based matching algorithm for cooperative mapping by autonomous robots. In: Distributed Autonomous Robotic Systems 4. Springer, Heidelberg (2000)Google Scholar
  20. 20.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Tech. Rep. CMU-RI-TR-05-13, Carnegie Mellon University (2005)Google Scholar
  21. 21.
    Dias, M.B., Zlot, R., Zinck, M., Gonzalez, J.P., Stentz, A.: A versatile implementation of the traderbots approach for multirobot coordination. In: Proc. of Intelligent Automated Systems (2004)Google Scholar
  22. 22.
    Dias, M.B., Zlot, R., Zinck, M., Stentz, A.: Robust multirobot coordination in dynamic environments. In: Proc. of the IEEE Intl Conference on Robotics and Automation (2004)Google Scholar
  23. 23.
    Fenwick, J.W., Newman, P.M., Leonard, J.J.: Cooperative concurrent mapping and localization. In: Proc. of the IEEE Conference on Robotics and Automation (2002)Google Scholar
  24. 24.
    Fink, J., Michael, N., Kumar, V.: Composition of vector fields for multi-robot manipulation via caging. In: Proc. of Robotics: Science and Systems Conference (2007)Google Scholar
  25. 25.
    Finzi, A., Orlandini, A.: Human-Robot Interaction Through Mixed-Initiative Planning for Rescue and Search Rovers. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 483–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42 (2003)Google Scholar
  27. 27.
    Fong, T., Thorpe, C., Baur, C.: Multi-Robot Remote Driving With Collaborative Control. IEEE Transactions on Industrial Electronics 50(4) (2003)Google Scholar
  28. 28.
    Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Autonomous Robots 8(3) (2000)Google Scholar
  29. 29.
    Freese, M., Matsuzawa, T., Oishi, Y., Debenest, P., Takita, K., Fukushima, E.F., Hirose, S.: Robotics-assisted demining with gryphon. Advanced Robotics 21(15) (2007)Google Scholar
  30. 30.
    Frias-Martinez, V., Sklar, E.I.: A framework for exploring role assignment in real-time, multiagent teams. In: The Second European Workshop on Multi-Agent Systems, EUMAS (2004)Google Scholar
  31. 31.
    Frias-Martinez, V., Sklar, E., Parsons, S.: Exploring Auction Mechanisms for Role Assignment in Teams of Autonomous Robots. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 532–539. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Gerkey, B.P., Mataríc, M.J.: Sold!: Auction methods for multi-robot control. IEEE Transactions on Robotics and Automation Special Issue on Multi-Robot Systems 18(5) (2002)Google Scholar
  33. 33.
    Gerkey, B.P., Mataríc, M.J.: Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (2003)Google Scholar
  34. 34.
    Gerkey, B.P., Mataríc, M.J.: A formal analysis and taxonomy c of task allocation in multi-robot systems. Intl. Journal of Robotics Research 23(9) (2004)Google Scholar
  35. 35.
    Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In: Proc. of the 11th Intl. Conference on Advanced Robotics, ICAR (2003)Google Scholar
  36. 36.
    Goodrich, M.A., Olsen, D.R., Crandall, J.W., Palmer, T.J.: Experiments in Adjustable Autonomy. In: IJCAI Workshop on Autonomy, Delegation, and Control: Interaction with Autonomous Agents (2001)Google Scholar
  37. 37.
    Goodrich, M.A., Schultz, A.C.: Human-robot interaction: a survey. Foundations and Trends in Human-Computer Interaction 1(3) (2007)Google Scholar
  38. 38.
    Habib, M.K.: Humanitarian Demining: Reality and the Challenge of Technology. Intl. Journal of Advanced Robotic Systems 4(2) (2007)Google Scholar
  39. 39.
    Hajjdiab, H., Laganiere, R.: Vision-based multi-robot simultaneous localization and mapping. In: Procedings of the Canadian Conference on Computer and Robot Vision (2004)Google Scholar
  40. 40.
    Halász, A., Hsieh, M.A., Berman, S., Kumar, V.: Dynamic redistribution of a swarm of robots among multiple sites. In: IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (2005)Google Scholar
  41. 41.
    Hollinger, G., Singh, S.: Proofs and experiments in scalable, near-optimal search by multiple robots. In: Proc. of Robotics: Science and Systems Conference (2008)Google Scholar
  42. 42.
    Hollinger, G., Singh, S., Djugash, J., Kehagias, A.: Efficient multi-robot search for a moving target. Intl. Journal of Robotics Research 28(2) (2009)Google Scholar
  43. 43.
    Hollinger, G., Singh, S., Kehagias, A.: Efficient, guaranteed search with multi-agent teams. In: Proc. of Robotics: Science and Systems Conference (2009)Google Scholar
  44. 44.
    Hong, J.H., Song, Y.S., Cho, S.B.: Mixed-initiative human-robot interaction using hierarchical bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part A 37(6) (2007)Google Scholar
  45. 45.
    Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proc. of the Computer-Human Interaction Conference, CHI (1999)Google Scholar
  46. 46.
    Howard, A.: Multi-robot simultaneous localization and mapping using particle filters. Journal of Robotics Research 25(12) (2006)Google Scholar
  47. 47.
    Huang, G.P., Trawny, N., Mourikis, A.I., Roumeliotis, S.I.: On the consistency of multi-robot cooperative localization. In: Proc. of Robotics: Science and Systems Conference (2009)Google Scholar
  48. 48.
    Jacoff, A., Messina, E., Evans, J.: A standard test course for urban search and rescue robots. In: Proc. of the Performance Metrics for Intelligent Systems Workshop, PerMIS (2000)Google Scholar
  49. 49.
    Kaber, D.B., Wright, M.C., Sheik-Nainar, M.A.: Multimodal interface design for adaptive automation of a human-robot system. Intl. Journal of Human-Computer Studies 64 (2006)Google Scholar
  50. 50.
    Kalra, N.: A market-based framework for tightly-coupled planned coordination in multirobot teams. Ph.D. thesis, The Robotics Institute, Carnegie Mellon University (2007)Google Scholar
  51. 51.
    Kalra, N., Ferguson, D., Stentz, A.: Hoplites: A market-based framework for complex tight coordination in multi-robot teams. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (2005)Google Scholar
  52. 52.
    Kanda, T., Hirano, T., Eaton, D.: Interactive robots as social partners and peer tutors for children: A field trial. In: Human-Computer Interaction, vol. 19 (2004)Google Scholar
  53. 53.
    Kang, S., Lee, W., Kim, M., Shin, K.: ROBHAZ-rescue: rough-terrain negotiable teleoperated mobile robot for rescue mission. In: IEEE Intl. Workshop on Safety, Security and Rescue Robotics (2005)Google Scholar
  54. 54.
    Koenig, S., Keskinocak, P., Tovey, C.: Progress on agent coordination with cooperative auctions. In: Proc. of the AAAI Conference on Artificial Intelligence (2010)Google Scholar
  55. 55.
    Lagoudakis, M., Berhault, M., Koenig, S., Keskinocak, P., Kelywegt, A.: Simple auctions with performance guarantees for multi-robot task allocation. In: Proc. of Int’l Conference on Intelligent Robotics and Systems, IROS (2004)Google Scholar
  56. 56.
    Lagoudakis, M., Markakis, V., Kempe, D., Keskinocak, P., Koenig, S., Kleywegt, A., Tovey, C., Meyerson, A., Jain, S.: Auction-based multi-robot routing. In: Proc. of Robotics: Science and Systems Conference (2005)Google Scholar
  57. 57.
    LaValle, S.M., Hutchinson, S.A.: Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation 14(6) (1998)Google Scholar
  58. 58.
    Lázaro, M.T., Castellanos, J.A.: Localization of probabilistic robot formations in SLAM. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (2010)Google Scholar
  59. 59.
    Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots 13(2) (2002)Google Scholar
  60. 60.
    Lerman, K., Jones, C.V., Galstyan, A., Mataríc, M.J.: Analysis of dynamic task allocation in multi-robot systems. Intl. Journal of Robotics Research 25(3) (2006)Google Scholar
  61. 61.
    Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior 15(3) (2007)Google Scholar
  62. 62.
    Mataric, M., Sukhatme, G., Ostergaard, E.: Multi-robot task allocation in uncertain environments. Autonomous Robots (2003)Google Scholar
  63. 63.
    McLurkin, J., Yamins, D.: Dynamic task assignment in robot swarms. In: Proc. of Robotics: Science and Systems Conference (2005)Google Scholar
  64. 64.
    Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Distributed multi-robot task assignment and formation control. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (2008)Google Scholar
  65. 65.
    Mitchell, T.M.: Machine Learning. McGraw Hill (2005)Google Scholar
  66. 66.
    Murphy, R.R.: Marsupial and shape-shifting robots for urban search and rescue. IEEE Intelligent Systems 15(2) (2000)Google Scholar
  67. 67.
    Murphy, R.R., Casper, J., Micire, M.: Potential tasks and research issues for mobile robots in roboCup rescue. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 339–344. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  68. 68.
    Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., Hutchinson, S.: Surveillance strategies for a pursuer with finite sensor range. Intl. Journal of Robotics Research (2007)Google Scholar
  69. 69.
    Nelson, A., Grant, E., Barlow, G., Henderson, T.: A colony of robots using vision sensing and evolved neural controllers. In: IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (2003)Google Scholar
  70. 70.
    Nelson, A., Grant, E., Henderson, T.: Evolution of neural controllers for competitive game playing with teams of mobile robots. Robotics and Autonomous Systems 46 (2004)Google Scholar
  71. 71.
    Nerurkar, E.D., Roumeliotis, S.I., Martinelli, A.: Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: Proc. of the IEEE Intl. Conference on Robotics and Automation (2009)Google Scholar
  72. 72.
    Open Source Computer Vision Library (OpenCV), http://sourceforge.net/projects/opencvlibrary/
  73. 73.
    Ota, J.: Multi-agent robot systems as distributed autonomous systems. Advanced Engineering Informatics 20 (2006)Google Scholar
  74. 74.
    Ozgelen, A.T., Kammet, J., Marcinkiewicz, M., Parsons, S., Sklar, E.I.: The 2007 MetroBots Four-legged League Team Description Paper. In: RoboCup 2007: Robot Soccer World Cup XI (2007)Google Scholar
  75. 75.
    Parker, L.E.: Cooperative robotics for multi-target observation. Intelligent Automation and Soft Computing 5(1) (1999)Google Scholar
  76. 76.
    Pereira, G.A.S., Campos, M.F.M., Kumar, V.: Decentralized algorithms for multi-robot manipulation via caging. Intl. Journal of Robotics Research (2004)Google Scholar
  77. 77.
    Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Engineering Practice 15 (2007)Google Scholar
  78. 78.
    Roomba: (access October 20, 2010), http://www.irobot.com
  79. 79.
    Rooy, D., Ritter, F.: St Amant, R.: Using a simulated user to explore human-robot interfaces. In: ACT-R Workshop (2002)Google Scholar
  80. 80.
    Royset, J., Sato, H.: Route optimization for multiple searchers. Tech. rep., Naval Postgraduate School, Monterey, CA (2009), http://faculty.nps.edu/joroyset/docs/RoysetSato_MultiSearcher.pdf
  81. 81.
    Sandini, G., Metta, G., Vernon, D.: The iCub Cognitive Humanoid Robot: An Open-System Research Platform for Enactive Cognition. In: Lungarella, M., Iida, F., Bongard, J.C., Pfeifer, R. (eds.) 50 Years of Aritficial Intelligence. LNCS (LNAI), vol. 4850, pp. 358–369. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  82. 82.
    Santana, P.F., Barata, J., Correia, L.: Sustainable Robots for Humanitarian Demining. Intl. Journal of Advanced Robotic Systems 4(2) (2007)Google Scholar
  83. 83.
    Sariel, S., Balch, T.: Efficient bids on task allocation for multi-robot exploration. In: Proc. of the Nineteenth Intl. Florida Artificial Intelligence Research Society Conference (2006)Google Scholar
  84. 84.
    Sarmiento, A., Murrieta-Cid, R., Hutchinson, S.: A multi-robot strategy for rapidly searching a polygonal environment. In: Proc. of the 9th Ibero-American Conference on Artificial Intelligence (2004)Google Scholar
  85. 85.
    Scerri, P., Pynadath, D.V., Tambe, M.: Why the elf acted autonomously: Towards a theory of adjustable autonomy. In: Proc. of the Intl. Joint Conference on Autonomous Agents and MultiAgent Systems, AAMAS (2002)Google Scholar
  86. 86.
    Severinson-Eklundh, K., Green, A., Hüttenrauch, H.: Social and collaborative aspects of interaction with a service robot. Tech. Rep. IPLab-208, Royal Institute of Technology, Stockholm (January 2003)Google Scholar
  87. 87.
    Shah, K., Meng, Y.: Communication-efficient dynamic task scheduling for heterogeneous multi-robot systems. In: Proc. of the IEEE Intl. Symposium on Computational Intelligence in Robotics and Automation (2007)Google Scholar
  88. 88.
    de Silva, V., Ghrist, R., Muhammad, A.: Blind swarms for coverage in 2-d. In: Proc. of Robotics: Science and Systems Conference (2005)Google Scholar
  89. 89.
    Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moor, M., Thrun, S., Younes, H.: Coordination for multi-robot exploration and mapping. In: Proc. of the 17th National Conference on Artificial Intelligence (2000)Google Scholar
  90. 90.
    Sklar, E.I., Epstein, S.L., Parsons, S., Ozgelen, A.T., Munoz, J.P.: A framework in which robots and humans help each other. In: Proc. of the AAAI Symposium Help Me Help You: Bridging the Gaps in Human-Agent Collaboration (2011)Google Scholar
  91. 91.
    Spletzer, J., Das, A.K., Fierro, R., Taylor, C.J., Kumar, V., Ostrowski, J.P.: Cooperative localization and control for multi-robot manipulation. In: Proc. of the IEEE/RSJ Intl Conference on Intelligent Robots (2001)Google Scholar
  92. 92.
    Stone, P., Veloso, M.: Communication in domains with unreliable, single-channel, low-bandwidth communication. In: Proc. of the Intl. Joint Conference on Artificial Intelligence, IJCAI (1998)Google Scholar
  93. 93.
    Svestka, P., Overmars, M.H.: Coordinated path planning for multiple robots. Robotics and Autonomous Systems 23 (1998)Google Scholar
  94. 94.
    Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Journal of Robotics Research (2004)Google Scholar
  95. 95.
    Tyrer, H., Alwan, M., Demiris, G., He, Z., Keller, J., Skubic, M., Rantz, M.: Technology for successful aging. In: Proc. of Engineering in Medicine and Biology Society (2006)Google Scholar
  96. 96.
    Vail, D., Veloso, M.: Dynamic multi-robot coordination. In: Schultz, A.C., Parker, L.E., Schneider, F.E. (eds.) Multi-Robot Systems: From Swarms to Intelligent Automata. Kluwer (2003)Google Scholar
  97. 97.
    Vaughan, R.T., Gerkey, B.: Really Reusable Robot Code and the Player/Stage Project. In: Brugali, D. (ed.) Software Engineering for Experimental Robotics. Springer, Heidelberg (2007)Google Scholar
  98. 98.
    Wegner, R., Anderson, J.: Agent-based support for balancing teleoperation and autonomy in urban search and rescue. Intl. Journal of Robotics and Automation 21(2) (2006)Google Scholar
  99. 99.
    Williams, K., Burdick, J.: Multi-robot boundary coverage with plan revision. In: Proc. of the IEEE Conference on Robotics and Automation (2006)Google Scholar
  100. 100.
    Woods, D., Tittle, J., Feil, M., Roesler, A.: Envisioning human-robot coordination in future operations. IEEE Transactions on Systems, Man and Cybernetics, Part C 34(2) (2004)Google Scholar
  101. 101.
    Yamashita, A., Arai, T., Ota, J., Asama, H.: Motion planning of multiple mobile robots for cooperative manipulation and transportation. IEEE Transactions on Robotics and Automation 19(2) (2003)Google Scholar
  102. 102.
    Yanco, H., Baker, M., Casey, R., Keyes, B., Thoren, P., Drury, J.L., Few, D., Nielsen, C., Bruemmer, D.: Analysis of Human-Robot Interaction for Urban Search and Rescue. In: Proc. of the IEEE Intl Workshop on Safety, Security and Rescue Robotics (2006)Google Scholar
  103. 103.
    Zheng, X., Koenig, S.: K-swaps: Cooperative negotiation for solving task-allocation problems. In: Proc. of the Intl Joint Conference on Artificial Intelligence (2009)Google Scholar
  104. 104.
    Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a market economy. In: Proc. of the IEEE Conference on Robotics and Automation (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elizabeth Sklar
    • 1
    • 4
  • A. Tuna Ozgelen
    • 1
    • 4
  • J. Pablo Munoz
    • 1
  • Joel Gonzalez
    • 2
  • Mark Manashirov
    • 1
  • Susan L. Epstein
    • 3
    • 4
  • Simon Parsons
    • 1
    • 4
  1. 1.Brooklyn CollegeThe City University of New YorkUSA
  2. 2.City CollegeThe City University of New YorkUSA
  3. 3.Hunter CollegeThe City University of New YorkUSA
  4. 4.The Graduate CenterThe City University of New YorkUSA

Personalised recommendations