Advertisement

The roots of knowledge

  • José M. Musacchio
Chapter
Part of the Springer Praxis Books book series (PRAXIS)

Summary

Most knowledge requires complex forms of learning and several types of memory that serve different functions, localized in different parts of the brain. What we commonly call memory refers to the declarative or explicit memory for language. This memory is the core of propositional knowledge, mainly localized in the left frontal and temporal lobes of the brain; it is affected early on by Alzheimer’s disease, which damages the hippocampus, a structure that plays an essential role in memory consolidation. In contrast, the memory for sensorimotor skills, such as cycling or swimming, is language-independent and involves the extrapyramidal system affected by Parkinson’s disease. The physical encoding of different types of memory in distinct brain circuits contradicts the popular belief that knowledge is a non-physical psychological process.

Keywords

Medial Temporal Lobe Implicit Learning Explicit Memory Declarative Memory Propositional Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aristotle. De Anima. Penguin Books; 1986.Google Scholar
  2. 2.
    Goodall J. Understanding Chimpanzees. 1st ed. Cambridge, MA: Harvard University Press; 1989.Google Scholar
  3. 3.
    Kandel ER. In Search of Memory. First ed. New York – London. W. Norton & Co.; 2006Google Scholar
  4. 4.
    Russell B. What is the Soul? In Praise of Idleness and Other Essays. 1st. ed. New York: Simon and Schuster; 1972:226–231.Google Scholar
  5. 5.
    Dietrich A, Been W. Memory and DNA. 71. J Theor Biol 2001;208(2):145–149CrossRefGoogle Scholar
  6. 6.
    Miller CA, Gavin CF, White JA et al. Cortical DNA methylation maintains remote memory. Nat Neurosci 2010;13(6):664–666.CrossRefGoogle Scholar
  7. 7.
    Steriade M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends in Neurosciences 1999;22(8):337–345.CrossRefGoogle Scholar
  8. 8.
    Kandel ER. Cellular Mechanisms of Learning and the Biological Basis of Individuality. In: Kandel ER, Schwartz A, Jessell TM, editors. Principles of Neural Science. Fourth ed. New York: McGraw-Hill; 2000:1247–1279.Google Scholar
  9. 9.
    Byrne JH. Learning and Memory: Basic Mechanisms. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NZ, Zigmond MJ, editors. Fundamental Neuroscience. Second ed. London: Academic Press; 2003:1276–1298.Google Scholar
  10. 10.
    Penfield W, Jasper H. Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little, Brown and Co.; 1954.Google Scholar
  11. 11.
    Penfield W. The Excitable Cortex in Conscious Man. Springfield, IL: Charles C. Thomas; 1958.Google Scholar
  12. 12.
    Kandel ER, Kupfermann I, Iversen S. Learning and Memory. In: Kandel ER, Schwartz A, Jessell TM, editors. Principles of Neural Science. Fourth ed. New York: McGraw-Hill; 2000:1227–1246.Google Scholar
  13. 13.
    Eichenbaum HB. Learning and Memory: Brain Systems. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NZ, Zigmond MJ, editors. Fundamental Neuroscience. Second ed. London: Academic Press; 2003:1299–1327.Google Scholar
  14. 14.
    Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science 1994;265:676–679.CrossRefGoogle Scholar
  15. 15.
    Karni A, Tanne D, Rubenstein BS, Askenasy JJM, Sagi D. Dependence of REM sleep on overnight improvement of a perceptual skill. Science 1994;265:679–682.CrossRefGoogle Scholar
  16. 16.
    Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annual Review of Psychology 1993;44:453–495.CrossRefGoogle Scholar
  17. 17.
    Panegyres PK. The contribution of the study of neurodegenerative disorders to the understanding of human memory. Qjm 2004;97(9):555–567.CrossRefGoogle Scholar
  18. 18.
    LeDoux JE. Synaptic Self. How our brains become who we are. First ed. New York: Viking; 2002.Google Scholar
  19. 19.
    Fuster JM. Memory and planning. Two temporal perspectives of frontal lobe function. Advances in Neurology 1995;66:9–19.Google Scholar
  20. 20.
    Fuster JM. Distributed memory for both short and long term. Neurobiology of Learning & Memory 1998;70(1–2):268–274.CrossRefGoogle Scholar
  21. 21.
    Knowlton BJ, Squire LR. Artificial grammar learning depends on implicit acquisition of both abstract and exemplar-specific information. Journal of Experimental Psychology: Learning, Memory, & Cognition 1996;22(1):169–181.CrossRefGoogle Scholar
  22. 22.
    Cabeza R, Nyberg L. Neural bases of learning and memory: Functional neuroimaging evidence. Current Opinion in Neurology 2000;13(4):415–421.CrossRefGoogle Scholar
  23. 23.
    Cabeza R, Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 2000;12(1):1–47.CrossRefGoogle Scholar
  24. 24.
    Craik KJW. The Nature of Explanation. 2nd ed. Cambridge: Cambridge University Press; 1943.Google Scholar
  25. 25.
    Squire LR. Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning & Memory 2004;82(3):171–177.CrossRefGoogle Scholar
  26. 26.
    Reber PJ, Squire LR. Encapsulation of implicit and explicit memory in sequence learning. Journal of Cognitive Neuroscience 1998;10(2):248–263.CrossRefGoogle Scholar
  27. 27.
    Schacter DL, Slotnick SD. The cognitive neuroscience of memory distortion. Neuron 2004;44(1):149–160.CrossRefGoogle Scholar
  28. 28.
    Berkeley G. Philosophical Works. Rowman and Littlefield ed. Rowman and Littlefield; 1975.Google Scholar
  29. 29.
    Ryle G. The Concept of Mind. 1984 Reprinted ed. Chicago, Il: The University of Chicago Press; 1949.Google Scholar
  30. 30.
    Polanyi M. Personal Knowledge. Towards a Post-Critical Philosophy. Harper Torchbook ed. New York: Harper & Row; 1964.Google Scholar
  31. 31.
    Reber AS. Implicit Learning and Tacit Knowledge: An Essay on the Cognitive Unconscious. New York: Oxford University Press; 1993.Google Scholar
  32. 32.
    Knowlton BJ, Squire LR. The learning of categories: Parallel brain systems for item memory and category knowledge. Science 1993;262(5140):1747–1749.CrossRefGoogle Scholar
  33. 33.
    Russell B. In Praise of Idleness. First ed. New York: Simon and Schuster; 1972.Google Scholar
  34. 34.
    Jacob F. Evolution and tinkering. Science 1977;196:1161–1166.CrossRefGoogle Scholar
  35. 35.
    Jacob F. Complexity and tinkering. Annals of the New York Academy of Sciences 2001;929:71–73.CrossRefGoogle Scholar
  36. 36.
    Bickle J. Psychoneural Reduction. The New Wave. 1st. ed. Cambridge, MA: The MIT Press; 1998Google Scholar
  37. 37.
    Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. 4 ed. New York: McGraw-Hill; 2000.Google Scholar
  38. 38.
    Prigogine I, Stengers I. Order Out of Chaos. First ed. New York: Bantam Books; 1984.Google Scholar
  39. 39.
    Gell-Mann M. The Quark and the Jaguar. First ed. New York: W. H. Freeman and Company; 1994.Google Scholar
  40. 40.
    Papineau D. Mind the gap. In: Tomberling JE, editor. Philosophical Perspectives, 12, Language, Mind and Ontology. First ed. Malden, MA: Blackwell Publishers, Inc.; 1998:374–388.Google Scholar
  41. 41.
    Churchland PS, Sejnowski TJ. The Computational Brain. Cambridge, MA, MIT Press; 1992.Google Scholar
  42. 42.
    Abbott L, Sejnowski TJ. Introduction. In: Abbott L, Sejnowski TJ, editors. Neural Codes and Distributed Representations: Foundations of Neural Computation. 1st. ed. Cambridge, MA: MIT; 1999:vii–xxiiiGoogle Scholar
  43. 43.
    Koch C, Davis JL. Large-Scale Neuronal Theories of the Brain. First ed. Cambridge, MA: The MIT Press; 1994.Google Scholar
  44. 44.
    Bickle J, Mandik P. The Philosophy of Neuroscience. The Stanford Encyclopedia of Philosophy, 2002. http://plato.stanford.edu/archives/win2002/entries/neuroscience/).
  45. 45.
    O’Reilly RC, Munakata Y. Computational Explanations in Cognitive Neuroscience. Understanding the Mind by Simulating the Brain. First ed. Cambridge, MA: The MIT Press; 2000Google Scholar
  46. 46.
    Kandel ER. Neuroscience – The molecular biology of memory storage: A dialogue between genes and synapses. Science 2001;294(5544):1030–1038.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José M. Musacchio
    • 1
  1. 1.Department of PharmacologyNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations