Advertisement

Results and Discussion

  • Xiao-Yu Sun
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Plakortide E (85) and plakortone B (87) were first isolated from the Jamaican marine sponge Plakortis halichondrioides along with plakortones A, C, D in 1996 by Patil and coworkers. In 1999, plakortone B (87) was also isolated from the Caribbean sponge Plakortis simplex along with plakortones C–F by Fattorusso and coworkers. In their continuing program to identify compounds with antifungal properties, Wright and coworkers also isolated a molecule identified as plakortide E (85) from the sponge Plakortis halichondrioides in 2002.

Keywords

Total Synthesis Kinetic Resolution Terminal Alkyne Wittig Reaction Cyclic Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Patil AD, Freyer AJ, Bean MF, Carte BK, Westley JW, Johnson RK, Lahouratate P (1996) Tetrahedron 52:377–394CrossRefGoogle Scholar
  2. 2.
    Caffierei F, Fattorusso E, Taglialatela-Scafati O, Di Rosa M, Ianaro A (1999) Tetrahedron 55:13831–13840CrossRefGoogle Scholar
  3. 3.
    Chen Y, McCarthy PJ, Harmody DK, Schimoler-O’Rourke R, Chilson K, Selitrennikoff C, Pomponi SA, Wright AE (2002) J Nat Prod 65:1509–1512CrossRefGoogle Scholar
  4. 4.
    Semmelhack MF, Hooley RJ, Kraml CK (2006) Org Lett 8:5203–5206CrossRefGoogle Scholar
  5. 5.
    Xie X-G, Wu X-W, Lee H-K, Peng X-S, Wong HNC (2010) Chem Eur J 16:6933–6941CrossRefGoogle Scholar
  6. 6.
    Zhao Q (2006) PhD thesis, Shanghai institute of organic chemistry, the Chinese Academy of ScienceGoogle Scholar
  7. 7.
    Negishi E, Valente LF, Kobayashi MJ (1980) Am Chem Soc 102:3298–3299CrossRefGoogle Scholar
  8. 8.
    Smith AB III, Beauchamp TJ, LaMarche MJ, Kaufman MD, Qiu Y, Arimoto H, Jones DR, Kobayashi K (2000) J Am Chem Soc 122:8654–8664CrossRefGoogle Scholar
  9. 9.
    Smith AB III, Kaufman MD, Beauchamp TJ, LaMarche MJ, Arimoto H (1999) Org Lett 1:1823–1826CrossRefGoogle Scholar
  10. 10.
    Dutheuil G, Webster MP, Worthington PA, Aggarwal VK (2009) Angew Chem Int Ed 48:1–4Google Scholar
  11. 11.
    Leopold H, Hoffmann HMR, Wippel HG (1958) Chem Ber 91:61–63CrossRefGoogle Scholar
  12. 12.
    Wadsworth WS Jr, Emmons WD (1961) J Am Chem Soc 83:1733–1738CrossRefGoogle Scholar
  13. 13.
    Maryanoff BE, Reitz AB (1989) Chem Rev 89:863–927CrossRefGoogle Scholar
  14. 14.
    Gotor-Fernández V, Brieva R, Gotor V (2006) J Mol Catal B Enzym 40:111–120CrossRefGoogle Scholar
  15. 15.
    Ghanem A (2007) Tetrahedron 63:1721–1754CrossRefGoogle Scholar
  16. 16.
    Feldman KS, Pravez M (1986) J Am Chem Soc 108:1328–1330CrossRefGoogle Scholar
  17. 17.
    Feldman KS, Simpson RE (1989) J Am Chem Soc 111:4878–4886CrossRefGoogle Scholar
  18. 18.
    Feldman KS, Kraebel CM (1992) J Org Chem 57:4574–4576CrossRefGoogle Scholar
  19. 19.
    Weinreb CK, Hartsough D, Feldman KS (1995) Tetrahed Lett 36:6859–6862Google Scholar
  20. 20.
    Zhao Q, Wong HNC (2007) Tetrahedron 63:6296–6305CrossRefGoogle Scholar
  21. 21.
    McCoy LL (1958) J Am Chem Soc 80:6568–6572CrossRefGoogle Scholar
  22. 22.
    McCoy LL (1960) J Org Chem 25:2078–2082CrossRefGoogle Scholar
  23. 23.
    McCoy LL (1962) J Am Chem Soc 84:2246–2249CrossRefGoogle Scholar
  24. 24.
    Bottini AT (1963) J Org Chem 28:157–160Google Scholar
  25. 25.
    Chenault HK, Kim M-J, Akiyama A, Miyazawa T, Simon ES, Whitesides GM (1987) J Org Chem 52:2608–2611CrossRefGoogle Scholar
  26. 26.
    Barton P, Law AP, Page MI (1994) J Chem Soc Perkin Trans 2:2021–2029Google Scholar
  27. 27.
    Borszeky K, Mallat T, Baiker A (1997) Tetrahed Asymm 8:3745–3753CrossRefGoogle Scholar
  28. 28.
    Murahashi S-I, Naota T, Kuwabara T, Saito T, Kumobayashi H, Akutagawalb S (1990) J Am Chem Soc 112:7820–7822CrossRefGoogle Scholar
  29. 29.
    Yoshida M, Miura M, Nojima M, Kusabayashi S (1983) J Am Chem Soc 105:6279–6285CrossRefGoogle Scholar
  30. 30.
    Ito T, Tokuyasu T, Masuyama A, Nojima M, McCullough KJ (2003) Tetrahedron 59:525–536CrossRefGoogle Scholar
  31. 31.
    Tokuyasu T, Kunikawa S, McCullough KJ, Masuyama A, Nojima M (2005) J Org Chem 70:251–260CrossRefGoogle Scholar
  32. 32.
    Isayama S (1990) Bull Chem Soc Jpn 63:1305–1310CrossRefGoogle Scholar
  33. 33.
    Isayama S, Mukaiyama T (1989) Chem Lett 18:573–576CrossRefGoogle Scholar
  34. 34.
    O’Neill PM, Pugh M, Davies J, Ward SA, Park BK (2001) Tetrahed Lett 42:4569–4571CrossRefGoogle Scholar
  35. 35.
    Yu J-Q, Corey EJ (2002) Org Lett 4:2727–2730CrossRefGoogle Scholar
  36. 36.
    Harris JR, Waetzig SR, Woerpel KA (2009) Org Lett 11:3290–3293CrossRefGoogle Scholar
  37. 37.
    Parsons AT, Campbell MJ, Johnson JS (2008) Org Lett 10:2541–2544CrossRefGoogle Scholar
  38. 38.
    Stahl SS (2004) Angew Chem Int Ed 43:3400–3420CrossRefGoogle Scholar
  39. 39.
    Baldwin AC (1983) In: Patai S (ed) The chemistry of peroxides, vol 1. Wiley, Chichester, pp 97–104Google Scholar
  40. 40.
    Korshin EE, Bachi MD (2006) In: Rappoport Z (ed) The chemistry of peroxides, vol 2. Wiley, Chichester, pp 189–305Google Scholar
  41. 41.
    Horner L, Hoffmann HMR, Wippel HG, Klahre G (1959) Chem Ber 92:2499–2505CrossRefGoogle Scholar
  42. 42.
    Schwartz J, Labinger JA (1976) Angew Chem Int Ed Engl 15:333–340CrossRefGoogle Scholar
  43. 43.
    Colvin EW, Hamill BJ (1973) J Chem Soc Chem Commun:151–152Google Scholar
  44. 44.
    Colvin EW, Hamill BJ (1977) J Chem Soc Chem Perkin Trans 1:869–874Google Scholar
  45. 45.
    Seyferth D, Hilbert P, Marmor RS (1970) Tetrahed Lett 11:2493–2496CrossRefGoogle Scholar
  46. 46.
    Gilbert JC, Weerasooriya U (1982) J Org Chem 47:1837–1845CrossRefGoogle Scholar
  47. 47.
    Gilbert JC, Weerasooriya U (1979) J Org Chem 44:4997–4998CrossRefGoogle Scholar
  48. 48.
    Ohira S (1989) Synth Commun 19:561–564CrossRefGoogle Scholar
  49. 49.
    Müller S, Liepold B, Roth GJ, Bestmann HJ (1996) Synlett:521–522Google Scholar
  50. 50.
    Corey EJ, Fuchs PL (1972) Tetrahed Lett 13:3769–3772CrossRefGoogle Scholar
  51. 51.
    Desai NB, McKelvie N (1962) J Am Chem Soc 84:1745–1747CrossRefGoogle Scholar
  52. 52.
    Marjanovic J, Kozmin SA (2007) Angew Chem Int Ed 46:8854–8857CrossRefGoogle Scholar
  53. 53.
    Lerm M, Gais H-J, Cheng K, Vermeeren C (2003) J Am Chem Soc 125:9653–9667CrossRefGoogle Scholar
  54. 54.
    Wailes PC, Weigold HJ (1970) Organomet Chem 24:405–411CrossRefGoogle Scholar
  55. 55.
    Hart DW, Schwartz J (1974) J Am Chem Soc 96:8115–8116CrossRefGoogle Scholar
  56. 56.
    Sun RC, Okabe M, Coffen DL, Schwartz J (1998) Org Synth 9:640Google Scholar
  57. 57.
    Nicolaou KC, Li Y, Fylaktakidou KC, Mitchell HJ, Sugita K (2001) Angew Chem Int Ed 40:3854–3857CrossRefGoogle Scholar
  58. 58.
    Zhang H, Guibe F, Balavoine G (1990) J Org Chem 55:1857–1867CrossRefGoogle Scholar
  59. 59.
    Betzer JF, Le Menez P, Prunet J, Brion J-D, Ardisson J, Pancrazi A (2002) Synlett:1–15Google Scholar
  60. 60.
    Semmelhack MF, Hooley RJ (2003) Tetrahed Lett 44:5737–5739CrossRefGoogle Scholar
  61. 61.
    Panek JS, Jain NF (2001) J Org Chem 66:2747–2756CrossRefGoogle Scholar
  62. 62.
    Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4442–4489CrossRefGoogle Scholar
  63. 63.
    Diederich F, Stang PJ (1998) Metal-catalyzed cross-coupling reactions, 1st edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  64. 64.
    de Meijere A, Diederich F (2004) Metal-catalyzed cross-coupling reactions, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  65. 65.
    King AO, Okukado N, Negishi E (1977) J Chem Soc Chem Commun 19:683–684CrossRefGoogle Scholar
  66. 66.
    Zeng F, Negishi E (2001) Org Lett 3:719–722CrossRefGoogle Scholar
  67. 67.
    Knochel P, Singer RD (1993) Chem Rev 93:2117–2188CrossRefGoogle Scholar
  68. 68.
    Boudier A, Bromm LO, Lotz M, Knochel P (2000) Angew Chem Int Ed 39:4414–4435CrossRefGoogle Scholar
  69. 69.
    Dussault PH, Eary CT (1998) J Am Chem Soc 120:7133–7134CrossRefGoogle Scholar
  70. 70.
    Xu C, Raible JM, Dussault PH (2005) Org Lett 7:2509–2511CrossRefGoogle Scholar
  71. 71.
    Evans DA, Chapman KT, Huang DT, Kawaguchi AT (1987) Angew Chem Int Ed Engl 26:1184–1186CrossRefGoogle Scholar
  72. 72.
    Evans DA, Urpi F, Somers TC, Clark JS, Bilodeau MT (1990) J Am Chem Soc 112:8215–8216CrossRefGoogle Scholar
  73. 73.
    Ihara M, Katsumata A, Setsu F, Tokunaga Y, Fukumoto K (1996) J Org Chem 61:677–684CrossRefGoogle Scholar
  74. 74.
    Neumann CS, Walsh CT (2008) J Am Chem Soc 130:14022–14023CrossRefGoogle Scholar
  75. 75.
    af Gennäs GB, Talman V, Aitio O, Ekokoski E, Finel M, Tuominen RK, Yli-Kauhaluoma J (2009) J Med Chem 52:3969–3981CrossRefGoogle Scholar
  76. 76.
    Ihara M, Setsu F, Shohda M, Taniguchi N, Tokunaga Y, Fukumoto K (1994) J Org Chem 59:5317–5323CrossRefGoogle Scholar
  77. 77.
    Ihara M, Takahashi M, Taniguchi M, Fukumoto K, Kametani T (1987) J Chem Soc Chem Commun:619–620Google Scholar
  78. 78.
    Neises B, Steglich W (1978) Angew Chem Int Ed Engl 90:556–557CrossRefGoogle Scholar
  79. 79.
    Kogen H, Tomioka K, Hashimoto S, Koga K (1981) Tetrahedron 37:3951–3956CrossRefGoogle Scholar
  80. 80.
    Czernecki S, Georgoulis C, Provelenghiou C (1976) Tetrahed Lett 17:3535–3536CrossRefGoogle Scholar
  81. 81.
    Kuhn R, Löw L, Trishmann H (1957) Chem. Ber. 90:203CrossRefGoogle Scholar
  82. 82.
    Fukuzawa A, Sato H, Masamune T (1987) Tetrahed Lett 28:4303–4306Google Scholar
  83. 83.
    Roberston DE, Bornscheuer UT (2005) Curr Opin Chem Biol 9:164–165CrossRefGoogle Scholar
  84. 84.
    Beisson F, Tiss A, Riviere C, Verger R (2000) Eur J Lipid Sci Technol 102:133–153CrossRefGoogle Scholar
  85. 85.
    Schoffers E, Golebioeski A, Johnson CR (1996) Tetrahedron 52:3769–3826CrossRefGoogle Scholar
  86. 86.
    Klibanov AM (1997) Trends Biotechnol 15:87–101CrossRefGoogle Scholar
  87. 87.
    Faber K (1997) Biotransformation in organic chemistry, 3rd edn. Springer, HeidelbergGoogle Scholar
  88. 88.
    Schmid RD, Verger R (1998) Angew Chem Int Ed 37:1608–1633CrossRefGoogle Scholar
  89. 89.
    Haraldsson G (1992) The application of lipases in organic synthesis. In: Patai S (ed) The chemistry of acid derivatives, vol 2. Wiley, Chichester, pp 1395–1473CrossRefGoogle Scholar
  90. 90.
    Wong C-H, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, OxfordGoogle Scholar
  91. 91.
    Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Nature 409:258–268CrossRefGoogle Scholar
  92. 92.
    Moss GP (1996) Pure Appl Chem 68:2193–2222CrossRefGoogle Scholar
  93. 93.
    Sakai T, Kawabata I, Kishimoto T, Ema T, Utaka M (1997) J Org Chem 62:4906–4907CrossRefGoogle Scholar
  94. 94.
    Sakai T, Liu Y, Ohta H, Korenaga T, Ema T (2005) J Org Chem 70:1369–1375CrossRefGoogle Scholar
  95. 95.
    Andrade LH, Barcellos T (2009) Org Lett 11:3052–3055CrossRefGoogle Scholar
  96. 96.
    Shing TKM, Tsui H-C, Zhou Z-H (1995) J Org Chem 60:3121–3130CrossRefGoogle Scholar
  97. 97.
    Yu P, Yang Y, Zhang Z-Y, Mak TCW, Wong HNC (1997) J Org Chem 62:6359–6366CrossRefGoogle Scholar
  98. 98.
    Peng XS, Wong HNC (2006) Chem Asian J 1:111–120CrossRefGoogle Scholar
  99. 99.
    Peng XS (2006) PhD thesis, the Chinese University of Hong Kong, Hong KongGoogle Scholar
  100. 100.
    Lee JS, Fuchs PL (2005) J Am Chem Soc 127:13122–13123CrossRefGoogle Scholar
  101. 101.
    Grondal C, Jeanty M, Jeanty M (2010) Nat Chem 2:167–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Xiao-Yu Sun
    • 1
  1. 1.Laboratory of Organic ChemistryETH ZürichZürichSwitzerland

Personalised recommendations