Features Detection on Industrial 3D CT Data

  • Thi-Chau Ma
  • Chang-soo Park
  • Kittichai Suthunyatanakit
  • Min-jae Oh
  • Tae-wan Kim
  • Myung-joo Kang
  • The-Duy Bui
Part of the Communications in Computer and Information Science book series (CCIS, volume 263)


Features are significantly used as design elements to reconstruct a model in reverse engineering. This paper proposes a new method for detecting corner features and edge features in 3D from CT scanned data. Firstly, the level set method is applied on CT scanned data to segment the data in the form of implicit function having two values, which mean inside and outside of the boundary of the shape. Next, corners and sharp edges are detected and extracted from the boundary of the shape. The corners are detected based on Sobel-like mask convolution processing with a marching cube. The sharp edges are detected based on Canny-like mask convolution. In this step, a noisy removal module is included. In the paper, the result of detecting both features is presented.


Reverse Engineering (RE) Computed Tomography (CT) Corner and Edge Features Detection Mask Convolution Noise Removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hubeli, A., Gross, M.: Multiresolution Feature Extraction for Unstructured Meshes. In: Proceedings of IEEE Visualization, pp. 287–294 (2001)Google Scholar
  2. 2.
    Song, B., Chan, T.: A Fast Algorithm for Level Set Based Optimization. CAM-UCLA 68 (2002)Google Scholar
  3. 3.
    Canny, J.: A Computational Approach to Edge Detection. TPAMI 8(6), 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Weber, C., Hahmann, S., Hagen, H.: Methods for Feature Detection in Point Clouds. In: Visualization of Large and Unstructured Data Sets, IRTG Workshop (2010)Google Scholar
  5. 5.
    Watanabe, K., Belyaev, A.G.: Detection of Salient Curvature Features on Polygonal Surfaces. In: Computer Graphics Forum, pp. 385–392 (2001)Google Scholar
  6. 6.
    Demarsin, K., Vanderstraeten, D., Volodine, T., Roose, D.: Detection of Closed Sharp Edges in Point Clouds using Normal Estimation and Graph Theory. Computer-Aided Design 39(4), 276–283 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hildebrand, K., Polthier, K., Wardetzky, M.: Smooth Feature Lines on Surface Meshes. In: Proceedings of Symposium on Geometric Processing (2005)Google Scholar
  8. 8.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale Feature Extraction on Point Sampled Surfaces. In: Computer Graphics Forum (2003)Google Scholar
  9. 9.
    Monga, O., Deriche, R., Rocchisani, J.: 3D Edge Detection using Recursive Filtering: Application to Scanner images. CVGIP - Image Underst. 53(1), 76–87 (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    Morgenthaler, M.: Rosenfeld. A.: Multidimensional Edge Detection by Hyper-surface Fitting. In: PAMI-3, July 4 (1981)Google Scholar
  11. 11.
    Bentum, M.J., Lichtenbelt, B.B.A., Malzbender, T.: Frequency Analysis of Gradient Estimators in Volume Rendering. IEEE Transactions in Medical Imaging (1997)Google Scholar
  12. 12.
    Monga, O., Deriche, R., Malandain, G., Cocquerez, J.P.: Recursive Filtering and Edge Closing: Two Primary Tools for 3D Edge Detection. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 56–65. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag, New York, Inc. (2003)Google Scholar
  14. 14.
    Gumhold, S., Wang, X., McLeod, R.: Feature Extraction from Point Clouds. In: Proceedings of 10th International Meshing Roundtable (2001)Google Scholar
  15. 15.
    Smith, S.M., Brady, J.M.: Susan - A New Approach to Low Level Image Processing. Int. J. Computer Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
  16. 16.
    Zucker, S.W., Hummed, R.A.: A Three Dimensional Edge Operator. IEEE Transaction on Pattern Analysis and Machine Intelligence, 3 (1981)Google Scholar
  17. 17.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics 21(4) (1987)Google Scholar
  18. 18.
    Pratt, W.K.: Digital Image Processing, 2nd edn. John Wiley and Sons, New York (1991)zbMATHGoogle Scholar
  19. 19.
    Mumford, D., Shah, J.: Optimal Approximation by Piecewise Smooth Functions and Associated Variational Problems. Commun. Pure. Appl. Math. 42, 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chan, T., Vese, L.: Active Contours without Edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Osher, S., Fedkiw, R.: Level Set Method and Dynamic Implicit Surfaces. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thi-Chau Ma
    • 1
  • Chang-soo Park
    • 2
  • Kittichai Suthunyatanakit
    • 3
  • Min-jae Oh
    • 3
  • Tae-wan Kim
    • 3
  • Myung-joo Kang
    • 2
  • The-Duy Bui
    • 1
  1. 1.Lab.of Human Machine InteractionUniversity of Engineering and Technology, Vietnam National UniversityHanoiVietnam
  2. 2.Dep. of Mathematical SciencesSeoul National UniversitySeoulKorea
  3. 3.Dep. of Naval Architecture and Ocean EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations