Illumination Invariant Motion Estimation and Segmentation

  • Yeonho Kim
  • Sooyeong Yi
Part of the Communications in Computer and Information Science book series (CCIS, volume 263)


Extracting moving objects from their background or partitioning them have been one of the most prerequisite tasks for various computer vision applications such as surveillance, tracking, human machine interface, etc. Though many previous approaches have been working in a certain level, still they are not robust under various unexpected situation such as large illumination change. In this paper, we propose a motion segmentation method based on our robust illumination invariant optical flow estimation. We present the superiority of our motion estimation method with synthesized images and improved segmentation results with real images.


Motion estimation Optical flow Segmentation Illumination invariant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Potter, J.L.: Scene segmentation using motion information. Computer Vision Graphics Image Process. 6, 558–581 (1977)CrossRefGoogle Scholar
  2. 2.
    Aggarwal, J.K., Nandhakumar, N.: On the computation of motion from sequences of images-A review. Proc. of the IEEE 76(8), 917–935 (1988)CrossRefGoogle Scholar
  3. 3.
    Jain, R., Martin, W.N., Aggarwal, J.K.: Segmentation through the detection of changes due to motion. Computer Vision Graphics Image Process 11, 13–34 (1979)CrossRefGoogle Scholar
  4. 4.
    Mitiche, A.: Computational Analysis of Visual Motion: ch.8 Detection, computation, and Segmentation of Visual Motion. Plenum Press (1994) Google Scholar
  5. 5.
    Dufaux, F., Moscheni, F., Lippman, A.: Spatio-temporal segmentation based on motion and static segmentation. In: Proc. of International Conference on Image Processing, Washington DC, vol. 1, pp. 306–309 (1995)Google Scholar
  6. 6.
    Gelgon, M., Bouthemy, P.: A region-level graph labeling approach to motion-based segmentation. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 514–519 (1997)Google Scholar
  7. 7.
    Moscheni, F., Bhattacharjee, S., Kunt, M.: Spatiotemporal segmentation based on region merging. IEEE Trans. on Pattern Analysis and Machine Intelligence. 20(9), 897–915 (1998)CrossRefGoogle Scholar
  8. 8.
    Schunck, B.: Image flow segmentation and estimation by constraint line clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 11(10), 1010–1027 (1989)CrossRefGoogle Scholar
  9. 9.
    Wang, J.Y.A., Adelson, E.H.: Representing moving images with layers. IEEE Trans. on Image Processing 3(5), 625–638 (1994)CrossRefGoogle Scholar
  10. 10.
    Weber, A., Malik, J.: Rigid body segmentation and shape description form optical flow under weak perspective. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(2), 139–143 (1997)CrossRefGoogle Scholar
  11. 11.
    Ayer, S., Sawhney, H.S.: Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding. In: Proc. of International Conference on Computer Vision (ICCV), pp. 777–784 ( June 1995)Google Scholar
  12. 12.
    Vasconcelos, N., Lippman, A.: Empirical bayesian motion segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence. 23(2), 217–221 (2001)CrossRefGoogle Scholar
  13. 13.
    Weiss, Y.: Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 520–526 (1997)Google Scholar
  14. 14.
    Thompson, W.B.: Combining motion and contrast for segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 2(6), 543–549 (1980)CrossRefGoogle Scholar
  15. 15.
    Gennert, M.A., Negahdaripour, S.: Relaxing the brightness constancy assumption in computing optical flow. MIT A.I. Lab. Memo No.975 (1987)Google Scholar
  16. 16.
    Negahdaripour, S.: Revised definition of optical flow: Integration of radiometric and geometric cues for dynamic scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(9), 961–979 (1998)CrossRefGoogle Scholar
  17. 17.
    Black, M.J., Anandan, P.: A framework for the robust estimation of optical flow. In: Proc. of Int’l Conference on Computer Vision (ICCV), Berlin, Germany, pp. 231–236 (May 1993)Google Scholar
  18. 18.
    Horn, K.P.: Robot Vision, 3rd edn. MIT Press, Cambridge MA (1987)Google Scholar
  19. 19.
    Koontz, W.L.Z., Fukunaga, K.: A nonparametric valley seeking technique for cluster analysis. IEEE Trans. on Computers, C 21, 171–178 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int’l Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yeonho Kim
    • 1
  • Sooyeong Yi
    • 2
  1. 1.Samsung Advanced Institute of TechnologyKorea
  2. 2.Seoul National University of Science and TechnologyKorea

Personalised recommendations