Advertisement

Reactive Transport

  • Haibing Shao
  • Sebastian Bauer
  • Florian Centler
  • Georg Kosakowski
  • Shuang Jin
  • Mingliang Xie
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 86)

Abstract

In this example, a one-dimensional column that initially contains calcite mineral is continuously flushed with water that contains magnesium chlorine (Fig. 15.1). With the movement of the water front, calcite starts to dissolve and dolomite is formed temporarily.

Keywords

Dissolve Inorganic Carbon Reaction Network Calcium Oxalate Reactive Transport Sand Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 181.
    W. Hummel, U. Berner, E. Curti, F.J. Pearson, and T. Troenen. The Nagra/PSI Chemical Thermodynamic Data Base 01/01. Universal Publishers, 2002.Google Scholar
  2. 182.
    D.L. Parkhurst and C. A. J. Appelo. User’s guide to phreeqc (version 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, 1999.Google Scholar
  3. 183.
    T. P. Clement Sun Y., J. N. Petersen and R. S. Skeen. Development of analytical solutions for multispecies transport with serial and parallel reactions. Water Resources Research, 35(1):185–190, 1999.Google Scholar
  4. 184.
    Ralf Köber Dirk Schäfer and Andreas Dahmke. Competing tce- and cis-dce-degradation kinetics by zero-valent iron - experimental results and numerical simulation. Journal of Contaminant Hydrology, 65:183–202, 2003.CrossRefGoogle Scholar
  5. 185.
    B.V. Van Breukelen, D. Hunkeler, and F. Volkering. Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ. Sci. Technol., 39(11):4189–4197, 2005.CrossRefGoogle Scholar
  6. 186.
    D.R. Aguilera, P. Jourabchi, C. Spiteri, and P. Regnier. A knowledge-based reactive transport approach for the simulation of biogeochemical dynamics in earth systems. Geochemistry, Geophysics, Geosystems, 6:Q07012, 2005.Google Scholar
  7. 187.
    P. Regnier, J.P. O’Kane, C.I. Steefel, and J.P. Vanderborght. Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Applied Mathematical Modelling, 26:913–927, 2002.zbMATHCrossRefGoogle Scholar
  8. 188.
    Urs von Gunten and Jürg Zobrist. Biogeochemical changes in groundwater-infiltration systems: Column studies. Geochimica et Cosmochimica Acta, 57:3895–3906, 1993.CrossRefGoogle Scholar
  9. 189.
    Dirk Schäfer, Wolfgang Schäfer, and Wolfgang Kinzelbach. Simulation of reactive processes related to biodegradation in aquifers. 2. model application to a column study on organic carbon degradation. Journal of Contaminant Hydrology, 31:187–209, 1998.Google Scholar
  10. 190.
    Martin Thullner, Philippe Van Cappellen, and Pierre Regnier. Modeling the impact of microbial activity on redox dynamics in porous media. Geochimica et Cosmochimica Acta, 69(21):5005–5019, 2005.CrossRefGoogle Scholar
  11. 191.
    Florian Centler, Haibing Shao, Cecilia de Bias, Chan-Hee Park, Pierre Regnier, Olaf Kolditz, and Martin Thullner. Geosysbrns - a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. submitted to Computers & Geosciences, 00:0000, 2009.Google Scholar
  12. 192.
    Olaf A. Cirpka and Albert J. Valocchi. Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour, 30:1668–1679, 2007.CrossRefGoogle Scholar
  13. 193.
    Olaf A. Cirpka and Albert J. Valocchi. Reply to comments on two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state by h. shao et al. Adv Water Resour, 32:298–301, 2009.Google Scholar
  14. 194.
    Haibing Shao, Florian Centler, Cecilia de Bias, Martin Thullner, and Olaf Kolditz. Comments on ”two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state” by o. a. cirpka and a. j. valocchi. Adv Water Resour, 32:293–297, 2009.Google Scholar
  15. 195.
    B Cochepin, L Trotignon, O Bildstein, Carl I Steefel, V Lagneau, and J Vanderlee. Approaches to modelling coupled flow and reaction in a 2d cementation experiment. Advances in Water Resources, 31(12):1540–1551, 2008.Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Haibing Shao
    • 1
  • Sebastian Bauer
    • 2
  • Florian Centler
    • 3
  • Georg Kosakowski
    • 4
  • Shuang Jin
    • 5
  • Mingliang Xie
    • 6
  1. 1.Department of Environmental Informatics, Helmholtz Centre for Environmental Research (UFZ)Technische Universität Dresden (TUD)LeipzigGermany
  2. 2.Department of Geohydro modellingUniversity of Kiel (CAU)KielGermany
  3. 3.Department of Environmental MicrobiologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  4. 4.Department of Nuclear Energy and Safety ResearchPaul-Scherrer-Institute (PSI)VilligenSwitzerland
  5. 5.Department of Earth Sciences - GeochemistryUtrecht University (UU)UtrechtThe Netherlands
  6. 6.Bereich Endlagersicherheitsforschung Abteilung ProzessanalysenGesellschaft fÜr Anlagen- und Reaktorsicherheit (GRS) mbHBraunschweigGermany

Personalised recommendations