Advertisement

Density Dependent Flow

  • Marc Walther
  • Jens-Olaf Delfs
  • Chan-Hee Park
  • Jude Musuuza
  • Florin Radu
  • Sabine Attinger
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 86)

Abstract

The governing equations used for variable density flow consist of three fundamental conservation equations: (i) continuity equation of flow, (ii) momentum equation, and (iii) contaminant transport equation. In addition, these three equations are linked to the equations of the bulk fluid density and the hydrodynamic dispersion equations.

Keywords

Hydraulic Head Saltwater Intrusion Measured Experimental Data Dispersion Zone Variable Density Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 102.
    L. A. Richards. Capillary conduction of liquids through porous mediums. Physics A-J Gen. Appl. Phys., 1(1):318–333, 1931.Google Scholar
  2. 157.
    R. R. Goswami and T. P. Clement. Laboratory-scale investigation of saltwater intrusion dynamics. Water Resour. Res., 43, 2007.Google Scholar
  3. 158.
    H. R. Henry. Salt intrusion into coastal aquifers. PhD thesis, Columbia University, New York, USA, 1960.Google Scholar
  4. 159.
    S. Sugio and C. S. Desai. Residual flow procedure for sea water intrusion in unconfined aquifers. Int J Num Meth Engng, 24(8):1439–1450, 1987.Google Scholar
  5. 160.
    R. R. Goswami, B. Ambale, and T. P. Clement. Estimating errors in concentration measurements obtained from image analysis. Vadose Zone Journal, 8(1):108–118, 2009.Google Scholar
  6. 161.
    R. A. Schincariol, F. W. Schwartz, and C. A. Mendoza. On the generation of instabilities in variable density flow. Water Resources Research, 30(4):913–927, 1994.Google Scholar
  7. 162.
    Jude L. Musuuza, Sabine Attinger, and Florin A. Radu. An extended stability criterion for density-driven flows in homogeneous porous media. Advances in Water Resources, 32:796–808, 2009. doi:10.1016/j.advwatres.2009.01.012.Google Scholar
  8. 163.
    R. A. Schincariol, F. W. Schwartz, and C. A. Mendoza. Instabilities in variable density flows: Stability and sensitivity analyses for homogeneous and heterogeneous media. Water Resources Research, 33(1):31–41, 1997.Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Marc Walther
    • 1
  • Jens-Olaf Delfs
    • 2
  • Chan-Hee Park
    • 3
  • Jude Musuuza
    • 4
  • Florin Radu
    • 2
  • Sabine Attinger
    • 5
  1. 1.Institute for Groundwater ManagementTechnische Universität Dresden (TUD)DresdenGermany
  2. 2.Department of Environmental InformaticsHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  3. 3.Korea Institute of Geoscience and Mineral Resources (KIGAM)DaejeonKorea
  4. 4.Institute for Earth Sciences: HydrogeologyFriedrich-Schiller-UniversitätJenaGermany
  5. 5.Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research (UFZ)Friedrich-Schiller-Universtität JenaLeipzigGermany

Personalised recommendations