An Approach Based on Grid-Value for Selection of Parents in Multi-objective Genetic Algorithm

  • Rahila Patel
  • M. M. Raghuwanshi
  • L. G. Malik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)

Abstract

In this work a new approach to parent selection based on Grid-value in multiobjective genetic algorithm is proposed. Here grid is used as a frame to determine the location of individuals in the objective space. Every solution inside the grid maintains an objective-rank vector and summation value. Summation value is the scalar fitness and used to discriminate individuals instead of Pareto-dominance relation. Since multiple solutions occupy same grid have same Summation-value, an adaptive selection mechanism is used in order to avoid duplicate selection and thereby enhancing spread of solution on the Pareto front. The multi-objective genetic algorithm based on the proposed selection scheme is tested on problems of CEC09 competition. The algorithm has shown either comparable or good performance on few unconstrained test problems.

Keywords

Pareto Front Multiobjective Genetic Algorithm Invert Generational Distance Evolutionary Multiobjective Optimization Adaptive Selection Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, A., Qu, B.Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective Evolutionary Algorithms: A Survey of the State-of-the-art. Swarm and Evolutionary Computation 1, 32–49 (2011)CrossRefGoogle Scholar
  2. 2.
    Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons, West Sussex (2001)MATHGoogle Scholar
  3. 3.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Nondominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proc. First Int’l. Conf., pp. 93—100 (1985) Google Scholar
  5. 5.
    Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multi-objective geneticalgorithms. In: Chawdry, P.K., et al. (eds.) Soft Computing in Eng’g Design and Manufacturing. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    di Pierro, F., Soon-Thiam, K., Savic, D.A.: An investigation on preference order ranking scheme for multi-objective evolutionary optimization. IEEE Transactions on Evolutionary Computation 11, 17–45 (2007)CrossRefGoogle Scholar
  7. 7.
    di Pierro, F.: Many-objective evolutionary algorithms and applications to water resources engineering, PhD thesis, University of Exeter, UK (August 2006) Google Scholar
  8. 8.
    Drechsler, N., Drechsler, R., Becker, B.: Multi-Objective Optimisation Based on Relation Favou. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 154–166. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Maneeratana, K., Boonlong, K., Chaiyaratana, N.: Compressed-Objective Genetic Algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS, vol. 4193, pp. 473–482. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Knowles, J., Corne, D.: Techniques for Highly Multi-objective Optimisation: Some Nondominated Points are Better than Others. In: GECCO 2007, London, England, United Kingdom, July 7-11 (2007) Google Scholar
  11. 11.
    Qu, B.Y., Suganthan, P.N.: Multi-objective Evolutionary Programming without Non-domination Sorting is up to Twenty Times Faster. In: IEEE Congress on Evolutionary Computation-CEC 2009 (2009) Google Scholar
  12. 12.
    Raghuwanshi, M.M., Kakde, O.G.: Multi-parent Recombination operator with Polynomial or Lognormal Distribution for Real Coded Genetic Algorithm. In: 2nd Indian International Conference on Artificial Intelligence (IICAI), pp. 3274–3290 (2005) Google Scholar
  13. 13.
    Zhang, Q., Zhou, A., Zhao, S.Z., Suganthan, P.N., Liu, W., Tiwari, S.: Multi-objective optimization Test Instances for the CEC 2009 Special Session and Competition. University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms, Technical Report (2008)Google Scholar
  14. 14.
    Tiwari, S., Fadel, G., Koch, P., Deb, K.: Performance Assessment of the Hybrid Archive-based Micro Genetic Algorithm (AMGA) on the CEC 2009 Test Problems. In: Congress on Evolutionary Computation, CEC 2009 (2009)Google Scholar
  15. 15.
    López Jaimes, A., Coello Coello, C.A.: Study of Preference Relations in Many-Objective Optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 611–618. ACM Press, Montreal (2009)Google Scholar
  16. 16.
    Zhao, S.Z., Suganthan, P.N.: Two-lbests Based Multi-Objective Particle Swarm Optimizer. Egineering Optimization 43(1), 1–17 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, M., Zheng, J., Shen, R., Li, K., Yuan, Q.: A Grid-Based Fitness Strategy for Evolutionary Many-Objective Optimization. In: GECCO 2010, Portland, Oregon, USA, July 7-11 (2010)Google Scholar
  18. 18.
    Qu, B.Y., Suganthan, P.N.: Multi-objective Evolutionary Algorithm based on the Summation of Normalized Objectives and Diversified Selection. Information Sciences 180(17), 3170–3181 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Qu, B.Y., Suganthan, P.N.: Multi-objective Differential Evolution based on the Summation of Normalized Objectives and Improved Diversified Selection. In: The Proc. of Symposium on Difference Evolution, Paris, France (April 2011) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rahila Patel
    • 1
  • M. M. Raghuwanshi
    • 2
  • L. G. Malik
    • 1
  1. 1.G.H. Raisoni College of EngineeringNagpurIndia
  2. 2.NYSS College of EngineeringNagpurIndia

Personalised recommendations