Economic Emission OPF Using Hybrid GA-Particle Swarm Optimization

  • J. Preetha Roselyn
  • D. Devaraj
  • Subranshu Sekhar Dash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7076)


This paper presents a Hybrid Genetic Algorithm (HGA) Particle Swarm Optimization (PSO) approach to solve Economic Emission Optimal Power Flow problem. The proposed approach optimizes two conflicting objective functions namely, fuel cost minimization and emission level minimization of polluted gases namely NO X , SO X and CO x simultaneously while satisfying operational constraints. An improved PSO which permits the control variables to be represented in their natural form is proposed to solve this combinatorial optimization problem. In addition, the incorporation of genetic algorithm operators in PSO improves the effectiveness of the proposed algorithm. The validity and effectiveness have been tested with IEEE 30 bus system and the results show that the proposed algorithm is competent in solving Economic Emission OPF problem in comparison with other existing methods.


Particle Swarm Optimization Particle Swarm Optimization Algorithm Fuel Cost Optimal Power Flow Genetic Algorithm Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Transactions on Power Apparatus and Systems PAS-87 (10), 1866–1876 (1968)CrossRefGoogle Scholar
  2. 2.
    Alsac, O., Scott, B.: Optimal load flow with steady state security. IEEE Transactions on Power Systems PAS 93(3), 745–751 (1974)CrossRefGoogle Scholar
  3. 3.
    Lee, K.Y., Park, Y.M., Ortiz, J.L.: Optimal real and reactive power dispatch. Electric Power Systems Research 7, 201–212 (1984)CrossRefGoogle Scholar
  4. 4.
    Sun, D.I., et al.: Optimal power flow by Newton approach. IEEE Transactions on PAS 103(10), 2864–2880 (1984)CrossRefGoogle Scholar
  5. 5.
    Stott, B., Hobson, E.: Power system security control calculations using linear Programming. IEEE Transactions on Power Apparatus and Systems, PAS 97, 1713–1931 (1978)CrossRefGoogle Scholar
  6. 6.
    Mangoli, M.K., Lee, K.Y.: Optimal real and reactive power control using linear Programming. Electric Power Systems Research 26, 1–10 (1993)CrossRefGoogle Scholar
  7. 7.
    Momoh, J.A., Zhu, J.Z.: Improved interior point method for OPF problems. IEEE Transactions on Power Systems 14, 1114–1120 (1999)CrossRefGoogle Scholar
  8. 8.
    Lai, L.L., Ma, J.T., Yokoyama, R., Zhao, M.: Improved genetic algorithm for optimal power flow under both normal and contingent operation states. Electrical Power and Energy Systems 9(5), 287–292 (1997)CrossRefGoogle Scholar
  9. 9.
    Bauirtzis, A.G., et al.: Optimal power flow by Enhanced genetic algorithm. IEEE Transactions on Power Systems 14, 1114–1120 (1999)CrossRefGoogle Scholar
  10. 10.
    Yuryevich, J., Wang, K.P.: Evolutionary Programming based optimal power flow algorithms. IEEE Transactions on Power Systems 14(4), 1245–1250Google Scholar
  11. 11.
    Deb, K.: Multi-objective evolutionary algorithm. John Wiley & Sons publicationsGoogle Scholar
  12. 12.
    Abido, M.A.: Multi-objective particle swarm optimization for environmental/economic dispatch problem. Electric Power System Research 79, 1105–1113 (2009)CrossRefGoogle Scholar
  13. 13.
    Wang, L., Singh, C.: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization. International Journal of Electrical Power and Energy Systems 30, 226–234 (2008)CrossRefGoogle Scholar
  14. 14.
    Devaraj, D., Preetha Roselyn, J.: Improved genetic algorithm for voltage security constrained optimal power flow problem. Int. Journal Energy Technology and Policy 5(4), 475–488Google Scholar
  15. 15.
    Panigrahi, B.K., Yadav, S.R., Agrawal, S., Tiwari, M.K.: Aclonal algorithm to solve economic load dispatch. Electric Power System Research 77, 1381–1389 (2007)CrossRefGoogle Scholar
  16. 16.
    Bouktir, T., Labdani, R., Slimani, L.: Economic Power Dispatch of Power System With Pollution Control Using Multi objective Particle Swarm Optimization. Journal of Pure and Applied Sciences 4, 57–77 (2007)Google Scholar
  17. 17.
    Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann publishers (2001)Google Scholar
  18. 18.
    Ongsakul, W., Tantimaporn, T.: Optimal power flow by improved evolutionary Programming. International Journal of Electric power Component and Systems (34), 79–95 (2006)CrossRefGoogle Scholar
  19. 19.
    Sayah, S., Zehar, K.: Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Conversion and Management 49, 3036–3042 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhou, A., Ru, B.-Y., Huiti, Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multi-objective Evolutionary Algorithm:A survey of the state of the art. Swarm and Evolutionary Computation 1, 32–49 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Preetha Roselyn
    • 1
  • D. Devaraj
    • 2
  • Subranshu Sekhar Dash
    • 1
  1. 1.SRM UniversityIndia
  2. 2.Kalasalingam UniversitySrivilliputhurIndia

Personalised recommendations