Conclusions

  • Armando Marino
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the past few decades, radar remote sensing has established itself as an indispensable tool for surveillance, particularly in areas where constant in situ inspections are impracticable (e.g. oceans, deserts, forests, etc.). The winning advantage of microwave compared with optical remote sensing is its availability at night time and with any weather conditions, and for longer wavelengths, the ability to penetrate foliage.

Keywords

Radar Cross Section Partial Target ALOS PALSAR Polarimetric Signature Wide Validation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Born M, Wolf E (1965) Principles of Optics, 3rd edn. Pergamon Press, New YorkGoogle Scholar
  2. Campbel JB (2007) Introduction to remote sensing. The Guilford Press, New YorkGoogle Scholar
  3. Chaney RD, Bud MC, Novak LM (1990) On the performance of polarimetric target detection algorithms. IEEE Aerosp Electron Syst Mag 5:10–15CrossRefGoogle Scholar
  4. Chuvieco E, Huete A (2009) Fundamentals of satellite remote sensing. Taylor & Francis Ltd, New YorkGoogle Scholar
  5. Cloude SR (1995) Lie groups in EM wave propagation and scattering. Chapter 2 in Electromagnetic symmetry.Baum C, Kritikos HN (eds) Taylor and Francis, Washington, pp 91–142. ISBN 1-56032-321-3Google Scholar
  6. Cloude SR (2009) Polarisation: applications in remote sensing. Oxford University Press, 978-0-19-956973-1Google Scholar
  7. Fleischman JG, Ayasli S, Adams EM (1996) Foliage attenuation and backscatter analysis of SAR imagery. IEEE Trans.Aerosp Electron Syst Mag 32:135–144CrossRefGoogle Scholar
  8. Horn R, Nannini M, Keller M (2006) SARTOM airborne campaign 2006: data acquisition report. DLR-HR-SARTOM-TR-001Google Scholar
  9. Kay SM (1998) Fundamentals of statistical signal processing, vol 2: detection theory, Prentice Hall, LynnfieldGoogle Scholar
  10. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. Lee J, Schuler DL, Ainsworth TL, Krogager E, Kasilingam D, Boerner WM (2002) On the estimation of radar polarization orientation shifts induced by terrain slopes. IEEE Trans Geosci Remote Sens 40(1):30–41CrossRefGoogle Scholar
  12. Li J, Zelnio EG (1996) Target detection with synthetic aperture radar. IEEE Trans. Aerosp Electron Syst Mag 32:613–627CrossRefGoogle Scholar
  13. Marino A, Woodhouse IH (2009) Selectable target detector using the polarization fork. In: IEEE international geoscience and remote sensing symposium IGARSS 2009Google Scholar
  14. Marino A, Cloude S, Woodhouse IH (2009) Polarimetric target detector by the use of the polarisation fork. In: Proceedings of 4th ESA international workshop, POLInSAR 2009Google Scholar
  15. Marino A, Cloude SR, Woodhouse IH (2010) A polarimetric target detector using the huynen fork. IEEE IEEE Trans. Geosci. Remote Sens 48:2357–2366CrossRefGoogle Scholar
  16. Marino A, Cloude SR, Woodhouse IH (2012) Detecting depolarizing targets using a new geometrical perturbation filter. IEEE Trans Geosci Remote Sens (Next available issue)Google Scholar
  17. Monahan JF (2001) Numerical methods of statistics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Mott H (2007) Remote sensing with polarimetric radar. Wiley, HobokenGoogle Scholar
  19. Novak LM, Hesse SR (1993) Optimal polarizations for radar detection and recognition of targets in clutter. In: Proceedings, IEEE national radar conference, Lynnfield, pp 79–83Google Scholar
  20. Novak LM, Burl MC, Irving MW (1993) Optimal polarimetric processing for enhanced target detection. IEEE Trans.Aerosp Electron Syst Mag 20:234–244CrossRefGoogle Scholar
  21. Papoulis A (1965) Probability, random variables and stochastic processes. McGraw-Hill, New YorkGoogle Scholar
  22. Richards JA (2009) Remote sensing with imaging radar-signals and communication technology. Springer-Verlag Berlin and Heidelberg GmbH & Co K, BerlinCrossRefGoogle Scholar
  23. Ulaby FT, Elachi C (1990) Radar polarimetry for geo-science applications. Artech House, NorwoodGoogle Scholar
  24. Walker N, Horn R, Marino A, Nannini M, Woodhouse IH (2010) The SARTOM project: tomography and polarimetry for enhanced target detection for foliage penetrating airborne P-band and L-band SAR. In: EMRS-DTC 2008, 6th Annual Technical Conference, Edinburgh, 13–14 JulyGoogle Scholar
  25. Woodhouse IH (2006) Introduction to microwave remote sensing. CRC press, Taylor & Frencies Group, New YorkGoogle Scholar
  26. Zebker H, Van Zyl JJ (1991) Imaging radar polarimetry. A review. Proc IEEE 79(11):1583–1606Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Armando Marino
    • 1
  1. 1.ETH ZurichInstitute of Environmental EngineeringZurichSwitzerland

Personalised recommendations