Radar Polarimetry

  • Armando Marino
Part of the Springer Theses book series (Springer Theses)


The aim of this chapter is to provide the basic concepts and tools for the study of polarimetric observations. The literature in this context is vast (especially regarding the description of targets) and for the sake of brevity some issues are not covered. Instead, this chapter focuses on the tools actually utilised in the formulation of the polarimetric detector described in later chapters.


Single Target Wave Polarisation Polarisation Ellipse Stokes Vector Speckle Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrawal AB, Boerner WM (1989) Redevelopment of Kennaugh’s target characteristic polarization state theory using the polarization transformation ratio formalism for the coherent case. IEEE Trans Geosci Remote Sens 27:2–14CrossRefGoogle Scholar
  2. Azzam RMA, Bashara NM (1977) Ellipsometry and polarized light. North Holland Press, AmsterdamGoogle Scholar
  3. Barakat R (1981) Bilinear constraints between the elements of the 4 × 4 Mueller-Jones matrix of polarization theory. Opt Commun 38:159–161CrossRefGoogle Scholar
  4. Bebbington DH (1992) Target vectors: spinorial concepts. Proceedings of the 2nd international workshop on radar polarimetry, IRESTE, Nantes, France, pp 26–36Google Scholar
  5. Beckmann P (1968) The depolarization of electromagnetic waves. The Golem Press, BoulderGoogle Scholar
  6. Boerner W-M (1981) Use of polarization in electromagnetic inverse scattering. Radio Sci 16:1037–1045CrossRefGoogle Scholar
  7. Boerner WM (2004) Basics of radar polarimetry. RTO SET Lecture SeriesGoogle Scholar
  8. Boerner WM, El-Arini MB, Chan CY, Mastoris PM (1981) Polarization dependence in electromagnetic inverse problems. IEEE Trans Antennas and Propag 29:262–271CrossRefGoogle Scholar
  9. Boerner WM, Kostinski A, James B (1988) On the concept of the polarimetric matched filter in high resolution radar imagery: an alternative for speckle reduction. In: Proceedings of lGARSS ‘88 symposium, Edinburgh, Scotland, pp 69–72Google Scholar
  10. Boerner WM, Yan WL, Xi AQ, Yamaguchi Y (1991) The characteristic polarization states for the coherent and partially polarized case. Proc IEEE Antennas Propag Conf, ICAP 79:1538–1550Google Scholar
  11. Boerner WM, Mott H, Luneburg E (1997) Polarimetry in remote sensing: basic and applied concepts. In: IEEE Proceedings on geosciences and remote sensing symposium IGARSS, vol 3, pp 1401–1403 August 1997 Google Scholar
  12. Born M, Wolf E (1965) Principles of optics, 3rd edn. Pergamon Press, New YorkGoogle Scholar
  13. Chaney RD, Bud MC, Novak LM (1990) On the performance of polarimetric target detection algorithms. Aerosp Electron Syst Mag IEEE 5:10–15CrossRefGoogle Scholar
  14. Cloude SR (1986) Group theory and polarization algebra. OPTIK 75:26–36Google Scholar
  15. Cloude SR (1987) Polarimetry: the characterisation of polarisation effects in EM scattering. Electronics Engineering Department. York, University of YorkGoogle Scholar
  16. Cloude RS (1992) Uniqueness of target decomposition theorems in radar polarimetry. Direct Inverse Methods Radar Polarim 2:267–296Google Scholar
  17. Cloude RS (1995a) An introduction to wave propagation antennas. UCL Press, LondonGoogle Scholar
  18. Cloude SR (1995b) Lie groups in EM wave propagation and scattering. In: Baum C, Kritikos HN (eds) Chapter 2 in electromagnetic symmetry. Taylor and Francis, Washington, pp 91–142. ISBN 1-56032-321-3Google Scholar
  19. Cloude SR (1995c) Symmetry, zero correlations and target decomposition theorems. In: Proceedings of 3rd international workshop on radar polarimetry (JIPR ‘95), IRESTE, pp 58–68Google Scholar
  20. Cloude SR (2009) Polarisation: applications in remote sensing. Oxford University Press, New York 978-0-19-956973-1CrossRefGoogle Scholar
  21. Cloude SR, Papathanassiou KP (1998) Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 36:1551–1565CrossRefGoogle Scholar
  22. Cloude SR, Pottier E (1996) A review of target decomposition theorems in radar polarimetry. IEEE Trans Geosci Remote Sens 34:498–518CrossRefGoogle Scholar
  23. Cloude SR, Pottier E (1997) An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens 35:68–78CrossRefGoogle Scholar
  24. Cloude SR, Corr DG, Williams ML (2004) Target detection beneath foliage using polarimetric synthetic aperture radar interferometry. Waves Random Complex Media 14:393–414Google Scholar
  25. Collin R (1985) Antennas and radiowave propagation. Mcgraw Hill, New YorkGoogle Scholar
  26. De Grandi GD, Lee J-S, Schuler DL (2007) Target detection and texture segmentation in polarimetric SAR images using a wavelet frame: theoretical aspects. IEEE Tran Geosci Remote Sens 45:3437–3453CrossRefGoogle Scholar
  27. Degraff SR (1988) SAR image enhancement via adaptive polarization synthesis and polarimetric detection performance. Polarimetric Technology Workshop, Redstone Arsenal, ALGoogle Scholar
  28. Deschamps GA (1951) Geometrical representation of the polarization of a plane electromagnetic wave. Proc IRE 39:540–544CrossRefGoogle Scholar
  29. Deschamps GA, Edward P (1973) Poincare sphere representation of partially polarized fields. IEEE Trans Antennas Propag 21:474–478CrossRefGoogle Scholar
  30. Dong Y, Forster B (1996) Understanding of partial polarization in polarimetric SAR data. Int J Remote Sens 17:2467–2475CrossRefGoogle Scholar
  31. Ferro-Famil L, Pottier E, Lee J (2002) Classification and interpretation of polarimetric SAR data. IGARSS, IEEE international geoscience and remote sensing symposium, Toronto, CanadaGoogle Scholar
  32. Freeman A (1992) SAR calibration: an overview. IEEE Trans Geosci Remote Sens 30:1107–1122CrossRefGoogle Scholar
  33. Goldstein DH, Collett E (2003) Polarized light. CRC, Boca RatonCrossRefGoogle Scholar
  34. Graves CD (1956) Radar polarization power scattering matrix. Proc IRE 44:248–252CrossRefGoogle Scholar
  35. Huynen JR (1970) Phenomenological theory of radar targets. Delft, Technical University, The NetherlandsGoogle Scholar
  36. Jones R (1941) A new calculus for the treatment of optical systems. I. description and discussion; II. Proof of the three general equivalence theorems; III. The Stokes theory of optical activity. J Opt Soc Am 31:488–503CrossRefGoogle Scholar
  37. Kay SM (1998) Fundamentals of statistical signal processing, volume 2: detection theory. Prentice Hall, Upper Saddle RiverGoogle Scholar
  38. Kennaugh EM (1981) Polarization dependence of radar cross sections—a geometrical interpretation. IEEE Trans Antennas Propag 29:412–414CrossRefGoogle Scholar
  39. Kennaugh EM, Sloan RW (1952) Effects of type of polarization on echo characteristics. Ohio state University, Research Foundation Columbus, Quarterly progress reports (In lab)Google Scholar
  40. Kostinski AB, Boerner W-M (1986) On foundations of radar polarimetry. IEEE Trans Antennas Propag 34:1395–1404CrossRefGoogle Scholar
  41. Krogager E (1993) Aspects of polarimetric radar imaging. Lyngby, DK, Technical University of DenmarkGoogle Scholar
  42. Lang RH (1981) Electromagnetic scattering from a sparse distribution of lossy dielectric scatterers. Radio Sci 16:15–30CrossRefGoogle Scholar
  43. Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  44. Lee JS, Grunes MR, Kwok R (1994) Classification of multi-look polarimetric SAR imagery based on the complex Wishart distribution. Int J Remote Sens 15:2299–2311CrossRefGoogle Scholar
  45. Lee JS, Grunes MR, Ainsworth TL, Du LJ, Schuler DL, Cloude SR (1999) Unsupervised classification using polarimetric decomposition and the complex wishart classifier. IEEE Trans Geosc Remote Sens 37:2249–2258CrossRefGoogle Scholar
  46. Lee JS, Grunes MR, Pottier E, Ferro-Famil L (2004) Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans Geosci Remote Sens 42:722–732CrossRefGoogle Scholar
  47. Lüneburg E (1995) Principles of radar polarimetry. Proc IEICE Trans Electron Theory E78-C:1339–1345Google Scholar
  48. Margarit G, Mallorqui JJ, Fabregas X (2007) Single-pass polarimetric SAR interferometry for vessel classification. IEEE Trans Geosci Remote Sens 45:3494–3502CrossRefGoogle Scholar
  49. Mott H (2007) Remote sensing with polarimetric radar. Wiley, HobokenGoogle Scholar
  50. Novak LM, Hesse SR (1993) Optimal polarizations for radar detection and recognition of targets in clutter. In: Proceedings, IEEE national radar conference, Lynnfield, MA, pp 79–83Google Scholar
  51. Novak LM, Sechtinand MB, Cardullo MJ (1987) Studies of target detection algorithms that use polarimetric radar data. In: Proceedings of the 21st Asilomar Confercnce on Signals, Systems andConiputers. Pacific Grove, CAGoogle Scholar
  52. Novak LM, Burl MC, Irving MW (1993a) Optimal polarimetric processing for enhanced target detection. IEEE Trans Aerosp Electron Syst 20:234–244CrossRefGoogle Scholar
  53. Novak LM, Owirka GJ, Netishen CM (1993b) Performance of a high-resolution polarimetric SAR automatic target recognition system. Linc Lab J 6:11–24Google Scholar
  54. Novak LM, Halversen SD, Owirka GJ, Hiett M (1997) Effects of polarization and resolution on SAR ATR. IEEE Trans Aerosp Electron Syst 33:102–116CrossRefGoogle Scholar
  55. Novak LM, Owirka GJ, Weaver AL (1999) Automatic target recognition using enhanced resolution SAR data. IEEE Trans Aerosp Electron Syst 35:157–175CrossRefGoogle Scholar
  56. Oliver C, Quegan S (1998) Understanding synthetic aperture radar images. Artech House, NorwoodGoogle Scholar
  57. Papathanassiou KP (1999) Polarimetric SAR interferometry. Physics, Technical University GrazGoogle Scholar
  58. Pottier E (1992) On Dr J.R. Huynen’s main contributions in the development of polarimetric radar techniques, and how the radar targets phenomenological concept becomes a theory. SPIE Opt Eng 1748:72–85Google Scholar
  59. Rothwell EJ, Cloud MJ (2001) Electromagnetics. CRC Press, Boca RatonCrossRefGoogle Scholar
  60. Sinclair G (1950) The transmission and reception of elliptically polarized waves. Proc IRE 38:148–151CrossRefGoogle Scholar
  61. Strang G (1988) Linear algebra and its applications, 3rd edn. Thomson Learning, New YorkGoogle Scholar
  62. Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New YorkGoogle Scholar
  63. Touzi R, Boerner WM, Lee JS, Lueneburg E (2004) A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Can J Remote Sens 30:380–407CrossRefGoogle Scholar
  64. Ulaby FT, Elachi C (1990) Radar polarimetry for geo-science applications. Artech House, NorwoodGoogle Scholar
  65. Van der Mee CVM, Hovenier JW (1992) Structure of matrices transforming stokes parameters. J Math Phys 33:3574–3584CrossRefGoogle Scholar
  66. Van Zyl JJ (1992) Application of cloude’s target decomposition theorem to polarimetric imaging radar data. SPIE Proc 1748:23–24Google Scholar
  67. Van Zyl J, Papas C, Elachi C (1987a) On the optimum polarizations of incoherently reflected wave. IEEE Trans Antennas Propag AP-35:818–825Google Scholar
  68. Van Zyl JJ, Zebker H, Elachi C (1987b) Imaging radar polarization signatures: theory and observation. Radio Sci 22:529–543CrossRefGoogle Scholar
  69. Wolf E (2003) Unified theory of coherence and polarization of random electromagnetic beams. Phys Lett 312:263–267CrossRefGoogle Scholar
  70. Woodhouse IH (2006) Introduction to microwave remote sensing. CRC Press Taylor & Francis Group, Boca RatonGoogle Scholar
  71. Xi A-Q, Boerner WM (1992) Determination of the characteristic polarization States of the target scattering matrix [S(AB)] for the coherent monostatic and reciprocal propagation space using the polarization transformation ratio formulation. J Opt Soc Am 9:437–455CrossRefGoogle Scholar
  72. Zebker HA, Van Zyl JJ (1991) Imaging radar polarimetry: a review. Proc IEEE 79:1583–1606CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Armando Marino
    • 1
  1. 1.ETH ZurichInstitute of Environmental EngineeringZurichSwitzerland

Personalised recommendations