Advertisement

Abstract

While the database collection types set, list, and record have received in-depth attention, the fourth type, array, is still far from being integrated into database modeling. Due to this lack of attention there is only insufficient array support by today’s database technology. This is surprising given that large, multi-dimensional arrays have manifold practical applications in earth sciences (such as remote sensing and climate modeling), life sciences (such as microarray data and human brain imagery), and many more areas.

To overcome this, addition of multi-dimensional arrays as a database abstraction have been studied by various groups worldwide. In the attempt towards a consolidation of the field we compare four important array models, AQL, AML, Array Algebra, and RAM. As it turns out, Array Algebra is capable of expressing all other models, and additionally offers functionality not present in the other models. This establishes a common representation suitable for comparison and allows us discussing the commonalities and differences found.

Keywords

Query Language Geographic Information System Array Model Multidimensional Array Image Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballegooij, A.V., Vries, A.P.D., Kersten, M.: Ram: Array processing over a relational dbms (2003)Google Scholar
  2. 2.
    Baumann, P.: On the management of multi-dimensional discrete data. VLDB Journal Special Issue on Spatial Database Systems 4(3), 401–444 (1994)Google Scholar
  3. 3.
    Baumann, P.: A Database Array Algebra for Spatio-Temporal Data and Beyond. In: Tsur, S. (ed.) NGITS 1999. LNCS, vol. 1649, pp. 76–93. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Catell, R., Cattell, R.G.G.: The Object Data Standard, 3.0 edn. (2000)Google Scholar
  5. 5.
    Cordeiro, J.P.C., Camara, G., de Freitas, U.M., Almeida, F.: Yet another map algebra. Geoinformatica 13, 183–202 (2009)CrossRefGoogle Scholar
  6. 6.
    Cornacchia, R., Heman, S., Zukowski, M., de Vries, A., Boncz, P.: Flexible and efficient ir using array databases. Technical Report INS-E0701 (2007)Google Scholar
  7. 7.
    Felger, W., Frühauf, M., Göbel, M., Gnatz, R., Hofmann, G.: Towards a reference model for scientific visualization systems. In: Proc. Eurographics Workshop on Visualization in Scientific Computing (April 1990)Google Scholar
  8. 8.
    Furtado, P., Baumann, P.: Storage of multidimensional arrays based on arbitrary tiling. In: Proceedings of the 15th International Conference on Data Engineering, March 23-26, pp. 328–336. IEEE Computer Society (1999)Google Scholar
  9. 9.
    Greco, S., Palopoli, L., Spadafora, E.: Extending datalog with arrays. Data Knowl. Eng. 17(1), 31–57 (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gutierrez, A.G., Baumann, P.: Modeling fundamental geo-raster operations with array algebra. In: Workshops Proceedings of the 7th IEEE International Conference on Data Mining, ICDM 2007, pp. 607–612. IEEE Computer Society (2007)Google Scholar
  11. 11.
    Howe, B., Maier, D.: Algebraic manipulation of scientific datasets. In: Proc. VLDB 2004, pp. 924–935 (2004)Google Scholar
  12. 12.
    ISO, editor. Information technology: Computer graphics and image processing, image processing and interchange, functional specification. Part 2: Programmer’s imaging kernel system: Application program interface. Number ISO/IEC JTC1 SC24 Document IM-157. International Organization for Standardization, ISO (1992)Google Scholar
  13. 13.
    ISO, editor. Information Processing Systems - Computer Graphics - Computer Graphics Reference Model. Number ISO/IEC JTC1 / SC24 / WG1 N133. International Organization for Standardization (ISO) (August 1990)Google Scholar
  14. 14.
    Mennis, C.T.J., Viger, R.: Cubic map algebra functions for spatio-temporal analysis. Cartography and Geographic Information Systems 30(1), 17–30 (2005)CrossRefGoogle Scholar
  15. 15.
    Lerner, A., Shasha, D.: Aquery: Query language for ordered data, optimization techniques, and experiments. In: VLDB 2003, pp. 345–356 (2003)Google Scholar
  16. 16.
    Libkin, L., Machlin, R., Wong, L.: A query language for multidimensional arrays: Design, implementation, and optimization techniques, pp. 228–239 (1996)Google Scholar
  17. 17.
    Machlin, R.: Index-based multidimensional array queries: safety and equivalence. In: Libkin, L. (ed.) PODS, pp. 175–184. ACM (2007)Google Scholar
  18. 18.
    Maier, D., Vance, B.: A call to order. In: PODS 1993: Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 1–16. ACM, New York (1993)CrossRefGoogle Scholar
  19. 19.
    Marathe, A.P., Salem, K.: A language for manipulating arrays. In: Proc. of VLDB, pp. 46–55 (1997)Google Scholar
  20. 20.
    Marathe, A.P., Salem, K.: Query processing techniques for arrays. In: SIGMOD 1999: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, pp. 323–334. ACM, New York (1999)CrossRefGoogle Scholar
  21. 21.
    Mecca, G., Bonner, A.J.: Sequences, datalog and transducers. In: PODS 1995: Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 23–35. ACM, New York (1995)CrossRefGoogle Scholar
  22. 22.
    n.n, http://www.unidata.ucar.edu/software/netcdf (last seen, September 2011)
  23. 23.
    n.n. Scidb, http://www.scidb.org (last seen, September 2011)
  24. 24.
    Buneman, P.: The Fast Fourier Transform as a Database Query. Technical Report MS-CIS-93-37, University of Pennsylvania (1993)Google Scholar
  25. 25.
    Pullar, D.: Mapscript: A map algebra programming language incorporating neighborhood analysis. Geoinformatica 5-2, 145–163 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Ritsch, R.: Optimization and Evaluation of Array Queries in Database Management Systems. Phd thesis, TU Muenchen (1999)Google Scholar
  27. 27.
    Ritter, G., Wilson, J., Davidson, J.: Image algebra: An overview. Computer Vision, Graphics, and Image Processing 49(1), 297–336 (1994)Google Scholar
  28. 28.
    Tomlin, D.: Geographic Information Systems and Cartographic Modeling. Prentice-Hall, Englewood Cliffs (1990)Google Scholar
  29. 29.
    van Ballegooij, A.R.: RAM: A Multidimensional Array DBMS. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 154–165. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Baumann
    • 1
  • Sönke Holsten
    • 1
  1. 1.Jacobs UniversityBremenGermany

Personalised recommendations