Interactive Navigation of Image Collections

  • Gerald Schaefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7105)

Abstract

Image databases are growing at a rapid rate and hence efficient and effective techniques to manage these vast repositories are highly sought after. Image database navigation systems provide an interesting alternative to retrieval based approaches, and in this paper we show how image browsers can be used for interactive exploration of large image collections based on the principle that visually similar images are located close to each other thus helping user navigation, and that large datasets are handled through a hierarchical approach.

Keywords

Image Retrieval Image Database Image Collection Dimensionality Reduction Technique Image Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Osman, T., Thakker, D., Schaefer, G., Lakin, P.: An integrative semantic framework for image annotation and retrieval. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 366–373 (2007)Google Scholar
  2. 2.
    Rodden, K.: Evaluating Similarity-Based Visualisations as Interfaces for Image Browsing. PhD thesis, University of Cambridge Computer Laboratory (2001)Google Scholar
  3. 3.
    Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1249–1380 (2000)CrossRefGoogle Scholar
  4. 4.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40, 1–60 (2008)CrossRefGoogle Scholar
  5. 5.
    Schaefer, G.: Search and retrieval of images by content. In: Int. Conference on Web Technologies and Internet Applications, pp. 5–8 (2011)Google Scholar
  6. 6.
    Schaefer, G.: Mining Image Databases by Content. In: Belhajjame, K. (ed.) BNCOD 2011. LNCS, vol. 7051, pp. 66–67. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Schaefer, G.: Content-Based Image Retrieval: Some Basics. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 21–29. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Schaefer, G.: Content-Based Image Retrieval: Advanced Topics. In: Czachórski, T., Kozielski, S., Stańczyk, U. (eds.) Man-Machine Interactions 2. AISC, vol. 103, pp. 31–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Plant, W., Schaefer, G.: Visualisation and Browsing of Image Databases. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds.) Multimedia Analysis, Processing and Communications. SCI, vol. 346, pp. 3–57. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Schaefer, G.: Content-based retrieval from image databases: colour, compression, and browsing. In: Int. Conference on Information Retrieval and Knowledge Management, pp. 5–10 (2010)Google Scholar
  11. 11.
    Schaefer, G.: Visualisation and browsing of large image repositories. In: 10th Int. Conference on Information (2010)Google Scholar
  12. 12.
    Schaefer, G.: Image browsers effective and efficient tools for managing large image collections. In: 2nd Int. Conference on Multimedia Computing and Systems, pp. 1–3 (2011)Google Scholar
  13. 13.
    Schaefer, G.: Interactive Exploration of Image Collections. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4. AISC, vol. 95, pp. 229–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Plant, W., Schaefer, G.: Visualising image databases. In: IEEE Int. Workshop on Multimedia Signal Processing, pp. 1–6 (2009)Google Scholar
  15. 15.
    Plant, W., Schaefer, G.: Navigation and browsing of image databases. In: Int. Conference on Soft Computing and Pattern Recognition, pp. 750–755 (2009)Google Scholar
  16. 16.
    Plant, W., Schaefer, G.: Image retrieval on the honeycomb image browser. In: 17th IEEE Int. Conference on Image Processing, pp. 3161–3164 (2010)Google Scholar
  17. 17.
    Schaefer, G., Ruszala, S.: Image Database Navigation: A Globe-Al Approach. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 279–286. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Schaefer, G., Ruszala, S.: Hierarchical Image Database Navigation on a Hue Sphere. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 814–823. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Schaefer, G., Ruszala, S.: Effective and efficient browsing of image databases. Int. Journal of Imaging Systems and Technology 18, 137–145 (2008)CrossRefGoogle Scholar
  20. 20.
    Schaefer, G.: A next generation browsing environment for large image repositories. Multimedia Tools and Applications 47, 105–120 (2010)CrossRefGoogle Scholar
  21. 21.
    Schaefer, G., Stuttard, M.: An on-line tool for browsing large image repositories. In: Int. Conference on Information Retrieval and Knowledge Management, pp. 102–106 (2010)Google Scholar
  22. 22.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Evaluating a visualisation of image similarity as a tool for image browsing. In: IEEE Symposium on Information Visualization, pp. 36–43 (1999)Google Scholar
  23. 23.
    Moving Picture Experts Group: Description of core experiments for MPEG-7 color/texture descriptors. Technical Report ISO/IEC JTC1/SC29/WG11/ N2929 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerald Schaefer
    • 1
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughU.K.

Personalised recommendations