Formal Verification of DEV&DESS Formalism Using Symbolic Model Checker HyTech

  • Han Choi
  • Sungdeok Cha
  • Jae Yeon Jo
  • Junbeom Yoo
  • Hae Young Lee
  • Won-Tae Kim
Part of the Communications in Computer and Information Science book series (CCIS, volume 256)


A hybrid system is a dynamical system reacting to continuous and discrete changes simultaneously. Many researchers have proposed modeling and verification formalisms for hybrid systems, but algorithmic verification of important properties such as safety and reachability is still an on-going research area. This paper demonstrates that a basic modeling formalism for hybrid systems, DEV&DESS is an easy-to-use input front-end of a formal verification tool, HyTech. HyTech is a symbolic model checker for liner hybrid automata, and we transformed an atomic DEV&DESS model into linear hybrid automata. We are now developing translation rules from DEV&DESS models, including a coupled DEV&DESS, into linear hybrid automata, through various case studies.


Model Checker Hybrid System Reachable State Label Function Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Esposito, J., Hur, Y., Ivančić, F., Vijay Kumar, I.L., Mishra, P., Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded systems. Proceedings of the IEEE 91(1), 11–28 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126 (1994)Google Scholar
  4. 4.
    Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded systems. IEEE Transactions on Software Engineering 22(3), 181–201 (1996)CrossRefGoogle Scholar
  5. 5.
    Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Interface and Controller Design for Hybrid Control Systems. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 462–492. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Asarin, E., Dang, T., Maler, O.: The d/dt Tool for Verification of Hybrid Systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–770. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Balluchi, A., Benvenuti, L., Benedetto, M., Pinello, C., Sangiovanni-Vincentelli, A.: Automotive engine control and hybrid systems: challenges and opportunities. Proceedings of the IEEE 88(7), 888–912 (2000)CrossRefGoogle Scholar
  8. 8.
    Chutinan, A., Krogh, B.H.: Verification of Polyhedral-Invariant Hybrid Automata Using Polygonal Flow Pipe Approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)Google Scholar
  10. 10.
    Daws, C., Olivero, A., Trypakis, S., Yovine, S.: The Tool Kronos. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Esposito, J.M., Kim, M.: Using formal modeling with an automated analysis tool to design and parametrically analyze a multirobot coordination protocol: A case study. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 37(3), 285–297 (2007)CrossRefGoogle Scholar
  12. 12.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: a model checker for hybrid systems. Software Tools for Technology Transfer 1(1-2), 110–122 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Henzinger, T.A., Wong-Toi, H.: Using Hytech to Synthesize Control Parameters for a Steam Boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl Seminar 1995. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Kim, T.G., Sung, C.H., Hong, S.Y., Hong, J.H., Choi, C.B., Kim, J.H., Seo, K.M., Bae, J.W.: Devsim++ toolset for defense modeling and simulation and interoperation. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 8(3), 129–142 (2011)CrossRefGoogle Scholar
  15. 15.
    Lee, D.A., Lee, J.H., Yoo, J., Kim, D.H.: Systematic verification of operational flight program through reverse engineering. In: International Conference on Advanced Software Engineering & Its Applications (submitted, 2011)Google Scholar
  16. 16.
    Mitchell, I., Tomlin, C.J.: Level Set Methods for Computation in Hybrid Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Praehofer, H.: Systems Theoretic Foundations for Combined Discrete Continuous System Simulation. Ph.D. thesis, Department of Systems Theory, University of Linz, Autria (1991)Google Scholar
  18. 18.
    Praehofer, H., Auernig, F., Reisinger, G.: An environment for devs-based multiformalism simulation in common lisp/CLOS. Discrete Event Dynamic Systems: Theory and Application 3, 119–149 (1993)CrossRefzbMATHGoogle Scholar
  19. 19.
    Praehofer, H., Pree, D.: Visual modeling of devs-based multiformalism systems based on higraphs. In: Simulation Conference Proceedings, pp. 595–603 (December 1993)Google Scholar
  20. 20.
    Tomlin, C., Pappas, G., Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    UPPAAL (2010),
  22. 22.
    Zeigler, B.P., Praehofer, H., Kim, T.G.: Theory of Modeling and Simulation. Academic Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Han Choi
    • 1
  • Sungdeok Cha
    • 1
  • Jae Yeon Jo
    • 2
  • Junbeom Yoo
    • 2
  • Hae Young Lee
    • 3
  • Won-Tae Kim
    • 3
  1. 1.Korea UniversitySeoulRepublic of Korea
  2. 2.Konkuk UniversitySeoulRepublic of Korea
  3. 3.Electronics and Telecommunications Research InstituteDaejeonRepublic of Korea

Personalised recommendations