Skip to main content

Extracting Image Semantic Object Based on Artificial Bee Colony Algorithm

  • 2353 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 137)

Abstract

In this paper, an efficient approach for extracting semantic object using artificial bee colonyalgorithm (ABCA) has been proposed. First, we reduce speckle noise in the image. Then fitness function of ABC algorithm is constructed, and image pixels are classified into different regions. Further semantic objects are extracted in terms of color information. The simulation results show that the color clustering via bee colony algorithm gives superior results in enhancing cluster compactness.

Keywords

  • artificial bee colony algorithm
  • image semantic
  • image segmentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-26007-0_84
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-26007-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, H.D., Jiang, X.H., Sun, Y., et al.: Color image segmentation: advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)

    CrossRef  MATH  Google Scholar 

  2. Noble, J.A., Boukerroui: Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging 25(8), 987–1010 (2006)

    CrossRef  Google Scholar 

  3. Di Zenzo, S.: Advances in image segmentation. Image and Vision Computing 1(4), 196–210 (1983)

    CrossRef  Google Scholar 

  4. Fu, K.S., Mui, J.K.: A survey on image segmentation. Pattern Recognition 13(1), 3–16 (1981)

    CrossRef  MathSciNet  Google Scholar 

  5. Tobias, O.J., Seara, R.: Image Segmentation by Histogram Thresholding Using Fuzzy Sets. IEEE Transactions on Image Processing 11(12), 1457–1465 (2002)

    CrossRef  Google Scholar 

  6. Fu, X., Ding, M.: A multi-threshold image segmentation method with adaptive fuzzy entropy. In: 2nd Interna. Confere. on Information Technology and Management Engineering, pp. 171–174 (2009)

    Google Scholar 

  7. Jun, T.: A color image segmentation algorithm based on region growing. In: 2nd International Conference on Computer Engineering and Technology, pp. 634–637 (2010)

    Google Scholar 

  8. Tao, W., Jin, H., Zhang, Y.: Color Image Segmentation based on Mean Shift and Normalized Cuts. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 37(5), 1382–1389 (2007)

    CrossRef  Google Scholar 

  9. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 15(11), 1101–1113 (1993)

    CrossRef  Google Scholar 

  10. Yaju, L., Baoliang, Z., Li, Z., et al.: Research on Image Segmentation Based on Fuzzy Theory. World Congress on Computer Science and Information Engineering 4, 790–794 (2009)

    CrossRef  Google Scholar 

  11. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  12. Dorigo, M., Socha, K.: An introduction to ant colony optimization. Technical Report series, pp. 3781–3794 (2005)

    Google Scholar 

  13. Lu, L., Luo, Q., Liu, J.-Y., et al.: An improved particle swarm optimization algorithm; Granular Computing. In: IEEE International Conference on GrC 2008, pp. 486–490 (2008)

    Google Scholar 

  14. Filho, C.J.A.B., de Lima Neto, F.B., Lins, et al.: A novel search algorithm based on fish school behavior. In: IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 2646–2651 (2008)

    Google Scholar 

  15. Hamdan, K.: How do bees make honey. Bee Research Unit, National Center for Agriculture Research and Technology Transfer, bee, http://www.jordanbru.info/howdoBeesmakehony.htm

  16. Pham, D.T., Ghanbarzadeh, A., Koc, E., et al.: The bees algorithm. Technical report, Manufacturing Engineering Centre, Cardiff University, UK (2005)

    Google Scholar 

  17. Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  18. Sadeg, S., Drias, H.: A selective approach to parallelise bees swarm optimization meta-heuristic. Int. J. Innov. Comput. Appl. 1(2), 146–158 (2007)

    CrossRef  Google Scholar 

  19. Seeley, T.D.: The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press (1995)

    Google Scholar 

  20. Chong, C.S., Malcolm Low, Y.H., Sivakumar, A.I., et al.: Using a bee colony algorithm for neighborhood search in job shop scheduling problems. In: 21st European Conference on Modeling and Simulation, ECMS (2007)

    Google Scholar 

  21. Baykasoglu, A., Ozbakir, L., Tapkan, P.: Artificial bee colony algorithm and its application to generalized assignment problem. In: Swarm Intelligence Focus on Ant and Particle Swarm Optimization. I-Tech Education and Publishing, Vienna, pp. 113–144 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yong-hao, X., Yong-chang, C., Wei-yu, Y., Jing, T. (2012). Extracting Image Semantic Object Based on Artificial Bee Colony Algorithm. In: Zeng, D. (eds) Advances in Control and Communication. Lecture Notes in Electrical Engineering, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-26007-0_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-26007-0_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-26006-3

  • Online ISBN: 978-3-642-26007-0

  • eBook Packages: EngineeringEngineering (R0)