Skip to main content

An Information Approach to Deriving Domestic Water Demand: An Application to Bogotá, Colombia

  • Conference paper
  • First Online:
Production Systems and Supply Chain Management in Emerging Countries: Best Practices

Abstract

This work presents a new model for studying water demand or use under an alternative pricing structure. The model takes into account the inequality shown by the distribution function of water usage: a large amount of water used by a small number of households. Rather than discard these extreme events (outliers), the model permits the description of the whole distribution function. The model builds on information by using extreme physical information theory, which provides a methodology to construct a dynamic equation describing water-use behavior. The solution to the dynamic equation gives the distribution function of water use, allowing calculations to be carried out in different scenarios for indicators such as the price elasticity of demand. The model is used to examine a case study of water use in Bogotá, Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The framework used in EPI theory to derive a Lagrangian is similar to the framework used when a Lagrangian is constructed by maximizing the uncertainty or Shannon entropy (Frieden 2004). The two approaches are compared by Hawkins and Frieden (2004), calculating density functions in bond and option prices.

  2. 2.

    The solution to the differential equation [2.15] is straightforward after the change of variable x → exp(x) and q(x) → x. Applying this change of variable, Eq. [2.15] becomes the typical second-order differential equation \( a\,\tilde{q}\prime\prime\,(\tilde{x}) + b\,\tilde{q}\prime(\tilde{x}) + c\,\tilde{q}(\tilde{x}) = 0 \), with \( a = 4 \), \( b = \frac{\kappa }{{t{{(\tilde{x})}^2}}} - 4 \) and \( c = - \beta \).

  3. 3.

    The transcendental equation is calculated and used to deduce \( {k_1} \), but it is not presented here because it is too long and its form does not contribute to the discussion.

  4. 4.

    The routines to calculate parameters of the Pareto distribution using an MLE method was programmed using Mathematica™ based on Clauset et al. (2009).

References

  • Anderson C (2006) The Long Tail: How Endless Choice Is Creating Unlimited Demand. Random House Business Books

    Google Scholar 

  • Andriani P, McKelvey B (2007) Beyond gaussian averages: Redirecting international business and management research toward extreme events and power laws. J Int Bus Stud 38(7):1212–1230

    Article  Google Scholar 

  • Andriani P, McKelvey B (2009) Perspective–from gaussian to paretian thinking: Causes and implications of power laws in organizations. Organ Sci 20(6):1053–1071

    Article  Google Scholar 

  • Arfken GB, Weber HJ (1995) Mathematical Methods for Physicists, 4th edn. Academic Press

    Google Scholar 

  • Babel M, Gupta A, Pradhan P (2007) A multivariate econometric approach for domestic water demand modeling: An application to kathmandu, nepal. Water Resour Manag 21:573–589

    Article  Google Scholar 

  • Barabási AL, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Physica A 311(3–4):590–614

    Article  MathSciNet  MATH  Google Scholar 

  • Barnett RR, Levaggi R, Smith P (1992) Local authority expenditure decisions: A maximum likelihood analysis of budget setting in the face of piecewise linear budget constraints. Oxford Econ Pap 44(1):113–134

    Google Scholar 

  • Bettencourt L, Lobo J, Helbing D, Kühnert C, West G (2007) Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences 104(17):7301–7306

    Article  Google Scholar 

  • Beuthe M, Eeckhoudt L, Scannella G (2000) A practical multicriteria methodology for assessing risky public investments. Socio Econ Plan Sci 34(2):121–139

    Article  Google Scholar 

  • Blomquist S, Newey W (2002) Nonparametric estimation with nonlinear budget sets. Econometrica 70(6):2455–2480

    Article  MathSciNet  MATH  Google Scholar 

  • Bonilla R, Zarama R, Valdivia JA (2011) Theoretical model to deduce a pdf with a power law tail using extreme physical information. arXiv:11025313v2 [physicsdata-an]

    Google Scholar 

  • Cheng TC (2005) Robust regression diagnostics with data transformations. Comput Stat Data An 49(3):875–891

    Article  MATH  Google Scholar 

  • Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical data. SIAM Review 51(4):661–703

    Article  MathSciNet  MATH  Google Scholar 

  • Conley BC (1967) Price elasticity of the demand for water in southern california. Ann Regional Sci 1:180–189

    Article  Google Scholar 

  • Dekking F, Kraaikamp C, Lopuhaa H, Meester L (2005) A Modern Introduction to Probability and Statistics. Springer-Verlag, London

    MATH  Google Scholar 

  • Durbin J (1973) Distribution theory for tests based on the sample distribution function. Society for Industrial and Applied Mathematics

    Google Scholar 

  • Efron B (1998) R. a. fisher in the 21st century. invited paper presented at the 1996 r. a. fisher lecture. Statistical Science 13(2):95–122

    Google Scholar 

  • Fisher RA (1925) Theory of statistical estimation. Mathematical Proceedings of the Cambridge Philosophical Society 22(05):700–725

    Article  MATH  Google Scholar 

  • Frieden B, Hawkins R (2010) Asymmetric information and economics. Physica A 389(2):287–295

    Article  MathSciNet  Google Scholar 

  • Frieden BR (2004) Science from Fisher Information: A Unification. Cambridge University Press

    Google Scholar 

  • Frieden BR, Cocke WJ (1996) Foundation for fisher-information-based derivations of physical laws. Phys Rev E 54(1):257–260

    Article  Google Scholar 

  • Frieden BR, Gatenby RA (2005) Power laws of complex systems from extreme physical information. Phys Rev E 72(3, Part 2)

    Google Scholar 

  • Frieden BR, Soffer BH (1995) Lagrangians of physics and the game of fisher-information transfer. Phys Rev E 52(3):2274–2286

    Article  Google Scholar 

  • Fullerton D, Gan L (2004) A simulation-based welfare loss calculation for labor taxes with piecewise-linear budgets. J Public Econ 88(11):2339–2359

    Article  Google Scholar 

  • Gatenby RA, Frieden BR (2002) Application of information theory and extreme physical information to carcinogenesis. Cancer Res 62(13):3675–3684

    Google Scholar 

  • Gurka MJ, Edwards LJ, Muller KE, Kupper LL (2006) Extending the box – cox transformation to the linear mixed model. J Roy Stat Soc A Sta 169(2):273–288

    Article  MathSciNet  Google Scholar 

  • Hausman JA (1985) The econometrics of nonlinear budget sets. Econometrica 53(6):1255–1282

    Article  MATH  Google Scholar 

  • Hawkins RJ, Frieden BR (2004) Fisher information and equilibrium distributions in econophysics. Phys Lett A 322(1–2):126–130

    Article  MathSciNet  MATH  Google Scholar 

  • Hawkins RJ, Aoki M, Frieden BR (2010) Asymmetric information and macroeconomic dynamics. Physica A 389(17):3565–3571

    Article  MathSciNet  Google Scholar 

  • Johnson N (2007) Two’s company, three is complexity. Oxford, Oneworld Publications

    Google Scholar 

  • Johnson N, Jefferies P, Hui P (2003) Financial market complexity. Oxford Finance Series, Oxford University Press

    Google Scholar 

  • Kumar A (2010) Nonparametric estimation of the impact of taxes on female labor supply. J Appl Econom

    Google Scholar 

  • Lise S, Paczuski M (2001) Self-organized criticality and universality in a nonconservative earthquake model. Phys Rev E 63(3 II):361,111–361,115

    Google Scholar 

  • Mandelbrot B (1960) The pareto-lévy law and the distribution of income. Int Econ Rev 1(2):79–106

    Article  MATH  Google Scholar 

  • Mandelbrot B (2009) New methods of statistical economics, revisited: Short versus long tails and gaussian versus power-law distributions. Complexity 14:55–65

    Article  Google Scholar 

  • Marsaglia G, Tsang WW, Wang J (2003) Evaluating kolmogorov’s distribution. J Stat Softw 8(18):1–4

    Google Scholar 

  • Mitzenmacher M (2003) A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2):226–251

    Article  MathSciNet  Google Scholar 

  • Moffitt R (1984) The effects of grants-in-aid on state and local expenditures : The case of afdc. J Public Econ 23(3):279–305

    Article  Google Scholar 

  • Moffitt R (1986) The econometrics of piecewise-linear budget constraints: A survey and exposition of the maximum likelihood method. J Bus Econ Stat 4(3):317–328

    Google Scholar 

  • Moffitt R (1990) The econometrics of kinked budget constraints. J Econ Perspect 4(2):119–39

    Article  Google Scholar 

  • Monteiro HPC (2010) Residential water demand in portugal: checking for efficiency-based justifications for increasing block tariffs. Working Papers ercwp0110, ISCTE, UNIDE, Economics Research Centre

    Google Scholar 

  • Montroll EW, Shlesinger MF (1983) Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails. J Stat Phys 32:209–230

    Article  MathSciNet  Google Scholar 

  • Newman MEJ (2005) Power laws, pareto distributions and zipf’s law. Contemp Phys 46(5):323–351

    Article  Google Scholar 

  • Olmstead SM, Hanemann WM, Stavins RN (2007) Water demand under alternative price structures. J Environ Econ Mang 54(2):181–198

    Article  MATH  Google Scholar 

  • Pareto V (1971) Manual of Political Economy, transl. by A Schwier. London: Macmillan

    Google Scholar 

  • Reed WJ (2003) The pareto law of incomes–an explanation and an extension. Physica A 319:469–486

    Article  MathSciNet  MATH  Google Scholar 

  • Sakia RM (1992) The box-cox transformation technique: a review. Statistician 41:169–178

    Article  Google Scholar 

  • Scannella G, Beuthe M (2003) Valuation of road projects with uncertain outcomes. Transport Rev 23(1):35–50

    Article  Google Scholar 

  • Seko M (2002) Nonlinear budget constraints and estimation: effects of subsidized home loans on floor space decisions in japan. J Hous Econ 11(3):280–299

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276

    Article  Google Scholar 

  • Strong A, Smith VK (2010) Reconsidering the economics of demand analysis with kinked budget constraints. Land Econ 86(1):173–190

    Google Scholar 

  • Teugels JL, Vanroelen G (2004) Box-cox transformations and heavy-tailed distributions. J Appl Probab 41:213–227

    Article  MathSciNet  Google Scholar 

  • Zaman A, Rousseeuw PJ, Orhan M (2001) Econometric applications of high-breakdown robust regression techniques. Econ Lett 71(1):1–8

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge EAAB for sharing micro data to perform the actual analysis. We acknowledge COLCIENCIAS’s financial support for Bonilla, and the financial support for Zarama from the Research Fund of the School of Engineering at Universidad de los Andes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Bonilla .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Definitions of functions, variables and parameters used in the document are presented in Tables 2, 3 and 4, respectively.

Table 2 Functions
Table 3 Variables
Table 4 Parameters

Appendix 2

This appendix shows the variable change to write the bounded information \( J \).

To minimize the information functional

$$ F = \int {\frac{{f\prime{{(x)}^2}}}{{f(x)}}{\hbox{d}}x} - \kappa \int {\frac{{h\prime{{(z)}^2}}}{{h(z)}}\,{\hbox{d}}z}, $$
(2.32)

the second term on the right,

$$ J = \int {\frac{{h\prime{{(z)}^2}}}{{h(z)}}\,{\hbox{d}}z,} $$
(2.33)

must be written in terms of \( f\prime(x) \), \( f(x) \) and \( x \).

The variable change is done using Eqs. 2.6 and 2.7, and the conservation of the probability. Supposing that \( x \) and \( t(x) \) are random variables, the PDF \( h(z) \) can be written as the product of two random variables, by definition (Dekking et al. 2005).

$$ h(z = t(x)\,x) = \int {\frac{1}{{|x|}}f(x)p(\frac{z}{x}|x)\,{\hbox{d}}x,} $$
(2.34)

where the function \( p(t|x) \) is the probability of \( t = {t_1} \) or \( t = {t_2} \), given \( x \). This probability function, \( p(t|x) \), can be written in term of the delta function \( \delta (x - {x_0}) \) and the Heaviside step function \( H(x - {x_0}) \) (Arfken and Weber 1995) as

$$ p(t|x) = {a_1}\delta (t - {t_1})(1 - H(x - {x_0}) + {a_2}\delta (t - {t_2})H(x - {x_0}), $$
(2.35)

where \( {a_1} + {a_2} = 1 \).

Using equations Eq. 2.35 in Eq. 2.34, we get

$$ \begin{array}{llllll} h(z) = \int \limits_1^{\infty } \,\frac{1}{{|x|}}f(x)\left\{ {{a_1}\delta (\frac{z}{x} - {t_1})(1 - H(x - {x_0}) + {a_2}\delta (\frac{z}{x} - {t_2})H(x - {x_0})} \right\}\,{\hbox{d}}x \hfill \cr = \int \limits_1^{{{x_0}}} \,\frac{1}{{|x|}}f(x){a_1}\delta (\frac{z}{x} - {t_1})\,{\hbox{d}}x + \int \limits_{{{x_0}}}^{\infty } \,\frac{1}{{|x|}}f(x){a_2}\delta (\frac{z}{x} - {t_2})\,{\hbox{d}}x. \end{array} $$
(2.36)

An expression for \( h\prime(z) \) is calculated taking the derivative \( \tfrac{\partial }{{\partial z}} \) of Eq. 2.36,

$$ \begin{array}{llll} \frac{{\partial h(z)}}{{\partial z}} = \int \limits_0^{{{x_0}}} \,\frac{1}{{|x|}}f(x){a_1}\,\frac{\partial }{{\partial z}}\delta (\frac{z}{x} - {t_1})\,{\hbox{d}}x + \int \limits_{{{x_0}}}^{\infty } \,\frac{1}{{|x|}}f(x){a_2}\,\frac{\partial }{{\partial z}}\delta (\frac{z}{x} - {t_2})\,{\hbox{d}}x \hfill \cr = - \int \limits_0^{{{x_0}}} \,\frac{1}{{|x|}}f(x){a_1}\,\frac{{\left| y \right|}}{x}\delta (z - {t_1}x)\,{\hbox{d}}x - \int \limits_{{{x_0}}}^{\infty } \,\frac{1}{{|x|}}f(x){a_2}\,\frac{{\left| y \right|}}{x}\delta (z - {t_2}x)\,{\hbox{d}}x \hfill \cr = - \frac{1}{z}h(z). \end{array} $$
(2.37)

This last development takes into account that \( f(\tfrac{z}{{{t_i}}}) = {t_i}h(z) \) and properties of the delta special function.

Finally, using Eqs. 2.37 and 2.6, we write \( J = \int {\tfrac{{h\prime{{(z)}^2}}}{{h(z)}}\,{\hbox{d}}z} \) as

$$ \begin{array}{llll} J = \int \frac{{h(z)}}{{{z^2}}}\,{\hbox{d}}z \hfill \\ = \int \limits_1^{{{z^{ * }}}} \,\frac{{h(z)}}{{{z^2}}}\,{\hbox{d}}z + \int \limits_{{z^{ * *} }}^{\infty } \,\frac{{h(z)}}{{{z^2}}}\,{\hbox{d}}z \hfill \\ = \int \limits_1^{{{y_0}}} \,{t_1}\frac{{h({t_1}x)}}{{t_1^2{x^2}}}\,{\hbox{d}}x + \int \limits_{{{y_0}}}^{\infty } \,{t_2}\frac{{h({t_2}x)}}{{t_2^2{x^2}}}\,{\hbox{d}}x \hfill \cr = \int {\frac{1}{{t{{(x)}^2}}}\frac{{f(x)}}{{{x^2}}}\,{\hbox{d}}x,}\end{array} $$
(2.38)

where \( z ^{*} = {t_1}{x_0} \) and \( z ^{* *} = {t_2}{x_0} \), and \( h({t_i}x) = \tfrac{1}{{{t_i}}}\ f(x) \).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonilla, R., Zarama, R. (2012). An Information Approach to Deriving Domestic Water Demand: An Application to Bogotá, Colombia. In: Mejía, G., Velasco, N. (eds) Production Systems and Supply Chain Management in Emerging Countries: Best Practices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-26004-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-26004-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-26003-2

  • Online ISBN: 978-3-642-26004-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics