Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. and Data Eng. (TKDE) 17, 734–749 (2005)
CrossRef
Google Scholar
Bishop, C.M.: Pattern recognition and machine learning, vol. 4, ch. 2. Springer, New York (2006)
MATH
Google Scholar
GroupLens Research (2007),
http://www.grouplens.org/node/73#attachments
Ding, C., Jin, R., Li, T., Simon, H.D.: A learning framework using Green’s function and kernel regularization with application to recommender system. In: ACM SIGKDD, pp. 260–269 (2007)
Google Scholar
Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. (TKDE) 19(3), 355–369 (2007)
CrossRef
Google Scholar
Funk, S.: Netflix update: Try this at home (2006),
http://sifter.org/~simon/journal/20061211.html
Ge, Y., Liu, Q., Xiong, H., Tuzhilin, A., Chen, J.: Cost-aware travel tour recommendation. In: ACM SIGKDD, pp. 983–991 (2011)
Google Scholar
Ge, Y., Xiong, H., Tuzhilin, A., et al.: An energy-efficient mobile recommender system. In: ACM SIGKDD, pp. 899–908 (2010)
Google Scholar
Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems. In: ACM RecSys, pp. 117–124 (2009)
Google Scholar
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS) 22(1), 5–53 (2004)
CrossRef
Google Scholar
Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS) 22(1), 89–115 (2004)
CrossRef
Google Scholar
Kim, J.W., Lee, B.H., Shaw, M.J., Chang, H.-L., Nelson, M.: Application of decision-tree induction techniques to personalized advertisements on internet storefronts. Int. J. Electron. Commerce 5(3), 45–62 (2001)
Google Scholar
Koren, Y.: Collaborative filtering with temporal dynamics. In: ACM SIGKDD, pp. 447–456 (2009)
Google Scholar
Kurucz, M., Benczur, A.A., Csalogany, K.: Methods for large scale SVD with missing values. In: ACM KDDCup 2007, pp. 31–38 (2007)
Google Scholar
Liu, Q., Chen, E., Xiong, H., Ding, C.H.Q.: Exploiting user interests for collaborative filtering: interests expansion via personalized ranking. In: ACM CIKM, pp. 1697–1700 (2010)
Google Scholar
Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random missing data. In: ACM RecSys, pp. 5–12 (2009)
Google Scholar
Paul, R., Neophytos, I., Mitesh, S., Peter, B., John, R.: GroupLens: an open architecture for collaborative filtering of netnews. In: ACM CSCW, pp. 175–186 (1994)
Google Scholar
Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, vol. 20, pp. 1257–1264 (2008)
Google Scholar
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)
Google Scholar
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Schwaighofer, A., Tresp, V., Yu, K.: Learning Gaussian process kernels via hierarchical Bayes. In: NIPS, vol. 17, pp. 1209–1216 (2005)
Google Scholar
Umyarov, A., Tuzhilin, A.: Improving collaborative filtering recommendations using external data. In: IEEE ICDM, pp. 618–627 (2008)
Google Scholar
Wu, H., Wang, Y., Cheng, X.: Incremental probabilistic latent semantic analysis for automatic question recommendation. In: ACM RecSys, pp. 99–106 (2008)
Google Scholar