Skip to main content

Gaussian Process for Recommender Systems

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7091)

Abstract

Nowadays, recommender systems are becoming increasingly important because they can filter noisy information and predict users’ preferences. As a result, recommender system has become one of the key technologies for the emerging personalized information services. To these services, when making recommendations, the items’ qualities, items’ correlation, and users’ preferences are all important factors to consider. However, traditional memory-based recommender systems, including the widely used user-oriented and item-oriented collaborative filtering methods, can not take all these information into account. Meanwhile, the model-based methods are often too complex to implement. To that end, in this paper we propose a Gaussian process based recommendation model, which can aggregate all of above factors into a unified system to make more appropriate and accurate recommendations. This model has a solid statistical foundation and is easy to implement. Furthermore, it has few tunable parameters, therefore it is very suitable for a baseline algorithm. The experimental results on the MovieLens data set demonstrate the effectiveness of our method, and it outperforms several state-of-the-art algorithms.

Keywords

  • Gaussian Process
  • Recommender Systems
  • Collaborative Filtering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25975-3_6
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-25975-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. and Data Eng. (TKDE) 17, 734–749 (2005)

    CrossRef  Google Scholar 

  2. Bishop, C.M.: Pattern recognition and machine learning, vol. 4, ch. 2. Springer, New York (2006)

    MATH  Google Scholar 

  3. GroupLens Research (2007), http://www.grouplens.org/node/73#attachments

  4. Ding, C., Jin, R., Li, T., Simon, H.D.: A learning framework using Green’s function and kernel regularization with application to recommender system. In: ACM SIGKDD, pp. 260–269 (2007)

    Google Scholar 

  5. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. (TKDE) 19(3), 355–369 (2007)

    CrossRef  Google Scholar 

  6. Funk, S.: Netflix update: Try this at home (2006), http://sifter.org/~simon/journal/20061211.html

  7. Ge, Y., Liu, Q., Xiong, H., Tuzhilin, A., Chen, J.: Cost-aware travel tour recommendation. In: ACM SIGKDD, pp. 983–991 (2011)

    Google Scholar 

  8. Ge, Y., Xiong, H., Tuzhilin, A., et al.: An energy-efficient mobile recommender system. In: ACM SIGKDD, pp. 899–908 (2010)

    Google Scholar 

  9. Gunawardana, A., Meek, C.: A unified approach to building hybrid recommender systems. In: ACM RecSys, pp. 117–124 (2009)

    Google Scholar 

  10. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS)  22(1), 5–53 (2004)

    CrossRef  Google Scholar 

  11. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS) 22(1), 89–115 (2004)

    CrossRef  Google Scholar 

  12. Kim, J.W., Lee, B.H., Shaw, M.J., Chang, H.-L., Nelson, M.: Application of decision-tree induction techniques to personalized advertisements on internet storefronts. Int. J. Electron. Commerce 5(3), 45–62 (2001)

    Google Scholar 

  13. Koren, Y.: Collaborative filtering with temporal dynamics. In: ACM SIGKDD, pp. 447–456 (2009)

    Google Scholar 

  14. Kurucz, M., Benczur, A.A., Csalogany, K.: Methods for large scale SVD with missing values. In: ACM KDDCup 2007, pp. 31–38 (2007)

    Google Scholar 

  15. Liu, Q., Chen, E., Xiong, H., Ding, C.H.Q.: Exploiting user interests for collaborative filtering: interests expansion via personalized ranking. In: ACM CIKM, pp. 1697–1700 (2010)

    Google Scholar 

  16. Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random missing data. In: ACM RecSys, pp. 5–12 (2009)

    Google Scholar 

  17. Paul, R., Neophytos, I., Mitesh, S., Peter, B., John, R.: GroupLens: an open architecture for collaborative filtering of netnews. In: ACM CSCW, pp. 175–186 (1994)

    Google Scholar 

  18. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, vol. 20, pp. 1257–1264 (2008)

    Google Scholar 

  19. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)

    Google Scholar 

  20. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  21. Schwaighofer, A., Tresp, V., Yu, K.: Learning Gaussian process kernels via hierarchical Bayes. In: NIPS, vol. 17, pp. 1209–1216 (2005)

    Google Scholar 

  22. Umyarov, A., Tuzhilin, A.: Improving collaborative filtering recommendations using external data. In: IEEE ICDM, pp. 618–627 (2008)

    Google Scholar 

  23. Wu, H., Wang, Y., Cheng, X.: Incremental probabilistic latent semantic analysis for automatic question recommendation. In: ACM RecSys, pp. 99–106 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Q., Chen, E., Xiang, B., Ding, C.H.Q., He, L. (2011). Gaussian Process for Recommender Systems. In: Xiong, H., Lee, W.B. (eds) Knowledge Science, Engineering and Management. KSEM 2011. Lecture Notes in Computer Science(), vol 7091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25975-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25975-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25974-6

  • Online ISBN: 978-3-642-25975-3

  • eBook Packages: Computer ScienceComputer Science (R0)