Representing Belief Function Knowledge with Graphical Models

  • Imen Boukhris
  • Salem Benferhat
  • Zied Elouedi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7091)

Abstract

Belief function theory is an appropriate framework to model different forms of knowledge including probabilistic knowledge. One simple and efficient way to reason under uncertainty, is the use of compact graphical models, namely directed acyclic graphs. Therefore naturally, a question crosses the mind: If we deal with Bayesian belief knowledge does the network collapse into a Bayesian network? This paper attempts to answer this question by analyzing different forms of belief function networks defined with conditional beliefs defined either with a unique conditional distribution for all parents or a single conditional distribution for each single parent. We also propose a new method for the deconditionalization process to compute the joint distribution.

Keywords

Bayesian Network Directed Acyclic Graph Child Node Belief Function Focal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben Amor, N., Benferhat, S.: Graphoid properties of qualitative possibilistic independence. International Journal of Uncertainty, Fuzziness and Knowledge-Based 13, 59–96 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. Int. J. Approx. Reasoning 48, 399–418 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benferhat, S., Smaoui, S.: Hybrid possibilistic networks. Int. J. Approx. Reasoning 44(3), 224–243 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Dubois, D., Denoeux, T.: Statistical inference with belief functions and possibility measures: A discussion of basic assumptions. Combining Soft Computing and Statistical Methods in Data Analysis 77, 217–225 (2010)CrossRefGoogle Scholar
  6. 6.
    Laâmari, W., Ben Yaghlane, B., Simon, C.: Comparing Evidential Graphical Models for Imprecise Reliability. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 191–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Lewis, D.: Probabilities of conditionals and conditional probabilities. Philosophical Review 85, 297–315 (1976)CrossRefGoogle Scholar
  8. 8.
    Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann Publishers (1988)Google Scholar
  9. 9.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton (1976)MATHGoogle Scholar
  10. 10.
    Shenoy, P.P.: Valuation networks and conditional independence. In: Heckerman, D., Mamdani, A. (eds.) Uncertainty in Artificial Intelligence, vol. 93, pp. 191–199. Morgan Kaufmann, San Francisco (1993)CrossRefGoogle Scholar
  11. 11.
    Simon, C., Weber, P., Evsukoff, A.: Bayesian networks inference algorithm to implement dempster shafer theory in reliability analysis. Reliability Engineering and System Safety 93, 950–963 (2008)CrossRefGoogle Scholar
  12. 12.
    Smets, P.: Un modèle mathématico-statistique simulant le processus du diagnostic médical. Ph.d. thesis, Université Libre de Bruxelles (1978)Google Scholar
  13. 13.
    Smets, P.: Resolving misunderstandings about belief functions. Int. J. Approx. Reasoning 6(3), 321–344 (1992)CrossRefMATHGoogle Scholar
  14. 14.
    Smets, P.: Belief functions: The disjunctive rule of combination and the generalized bayesian theorem. Int. J. Approx. Reasoning 9(1), 1–35 (1993)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Xu, H., Smets, P.: Reasoning in evidential networks with conditional belief functions. Int. J. Approx. Reasoning 14, 155–185 (1996)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Imen Boukhris
    • 1
    • 2
  • Salem Benferhat
    • 2
  • Zied Elouedi
    • 1
  1. 1.LARODECUniversité de Tunis, ISG de TunisTunisia
  2. 2.Faculté Jean PerrinCRIL, Université d’ArtoisFrance

Personalised recommendations