Skip to main content

Towards Implicit Knowledge Discovery from Ontology Change Log Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7091)

Abstract

Ontology change log data is a valuable source of information which reflects the changes in the domain, the user requirements, flaws in the initial design or the need to incorporate additional information. Ontology change logs can provide operational as well as analytical support in the ontology evolution process. In this paper, we present a novel approach to deal with change representation and knowledge discovery from ontology change logs. We look into different knowledge gathering aspects to capture every single facet of ontology change. The ontology changes are formalised using a graph-based approach. The knowledge-based change log facilitates detection of similarities within different time series, discovering implicit dependencies between ontological entities and reuse of knowledge. We analyse an ontology change log graph in order to identify frequent changes that occur in ontologies over time. We identify different types of change sequences based on their order and completeness. Analysis of change logs also assists in extracting new change patterns and rules which cannot be found by simply querying or processing ontology change logs.

Keywords

  • Ontology Change Representation
  • Change Log
  • Pattern Discovery
  • Implicit Knowledge Discovery
  • Ontology Evolution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25975-3_13
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-25975-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, L.: Mining Change Logs and Release Notes to Understand Software Maintenance and Evolution. CLEI Electron Journal 12(2), 1–10 (2009)

    Google Scholar 

  2. Ivancsy, R., Vajk, I.: Frequent Pattern Mining in Web Log Data. Acta Polytechnica Hungarica. Journal of Applied Sciences 3(1), 77–90 (2006)

    Google Scholar 

  3. Pabarskaite, Z., Raudys, A.: A process of knowledge discovery from web log data: Systematization and critical review. Journal of Intelligent Information Systems 28(1), 79–104 (2007)

    CrossRef  Google Scholar 

  4. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.: Change Mining in Adaptive Process Management Systems. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 309–326. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  5. Peng, W., Li, T., Ma, S.: Mining logs files for data-driven system management. Journal of SIGKDD Explorations 7(1), 44–51 (2005)

    CrossRef  Google Scholar 

  6. Haase, P., Sure, Y.: Usage Tracking for Ontology Evolution. EU IST Project SEKT Deliverable D3.2.1, WP3.2 (2003)

    Google Scholar 

  7. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-Dimensional Sequential Pattern Mining. In: ACM International Conferenece on Information and Knowledge Management (CIKM 2001), pp. 81–88 (2001)

    Google Scholar 

  8. Javed, M., Abgaz, Y.M., Pahl, C.: A Pattern-Based Framework of Change Operators for Ontology Evolution. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 544–553. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  9. Javed, M., Abgaz, Y., Pahl, C.: A Layered Framework for Pattern-Based Ontology Evolution. In: 3rd International Workshop on Ontology-Driven Information System Engineering (ODISE), London, UK (2011)

    Google Scholar 

  10. Kosala, R., Blockeel, H.: Web mining research: A survey: Newsletter of the Special Interest Group on Knowledge Discovery and Data Mining. ACM 2(1), 1–15 (2000)

    Google Scholar 

  11. Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Process Management. In: Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, Springer, Heidelberg (1995)

    Google Scholar 

  12. Gacitua-Decar, V., Pahl, C.: Automatic Business Process Pattern Matching for Enterprise Services Design. In: 4th International Workshop on Service- and Process-Oriented Software Engineering (SOPOSE 2009). IEEE Press (2009)

    Google Scholar 

  13. He, D., Goker, A.: Detecting session boundaries from Web user logs. In: Proceedings of the 22nd Annual Colloquium on Information Retrieval Research, pp. 57–66. British Computer Society, Cambridge (2000)

    Google Scholar 

  14. Pitkow, J., Margaret, R.: Integrating bottom-up and top-down analysis for intelligent hypertext. In: Conference on Intelligent Knowledge Management, Intelligent Hypertext Workshop, National Institute of Standard Technology, December 12 (1994)

    Google Scholar 

  15. Montgomery, A.L., Faloutsos, C.: Identifying web browsing trends and patterns. Proceeding of IEEE Journal Computer 34(7), 94–95 (2001)

    CrossRef  Google Scholar 

  16. Cook, J.E., Wolf, A.L.: Discovering models of software prosses from event-based data. ACM Transactions on Software Engineering and Methodology 5(3), 215–249 (1998)

    CrossRef  Google Scholar 

  17. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process models with prime invisible tasks. Journal of Data Knowledge Engineering 69(10), 999–1021 (2010)

    CrossRef  Google Scholar 

  18. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Yu, P.S., Chen, A.L.P. (eds.) Proceedings of the Eleventh Int. Conf. on Data Engg, pp. 3–14. IEEE Computer Society, Washington (1995)

    CrossRef  Google Scholar 

  19. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Javed, M., Abgaz, Y.M., Pahl, C. (2011). Towards Implicit Knowledge Discovery from Ontology Change Log Data. In: Xiong, H., Lee, W.B. (eds) Knowledge Science, Engineering and Management. KSEM 2011. Lecture Notes in Computer Science(), vol 7091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25975-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25975-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25974-6

  • Online ISBN: 978-3-642-25975-3

  • eBook Packages: Computer ScienceComputer Science (R0)