Skip to main content

A Resource Recommendation Method Based on User Taste Diffusion Model in Folksonomies

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7091)

Abstract

To deal with the tri-relation of user-resource-tag in folksonomies and the data sparsity problem in personalized recommendation, we propose a user taste diffusion model based on the tripartite hypergraph to recommend resources for users. Through the defined tri-relation model and diffusion probability matrix, the user’s taste is diffused from itself to other users, resources and tags. When diffusion stops, the candidate resources can be identified then be ranked according to the taste values. As a result the top resources that have not been collected by the given user are selected as the final recommendations. Benefiting from the introduction of iterative diffusion mechanism, the recommendation results not only cover the resources collected by the given user’s direct neighbors but also cover the ones which are collected by his/her extended neighbors. Experimental results show that our method performs better in terms of precision and recall than other recommendation methods.

Keywords

  • Personalized recommendation
  • User taste diffusion
  • Tripartite hypergraph
  • Folksonomy.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25975-3_11
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-25975-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17, 734–749 (2005)

    CrossRef  Google Scholar 

  2. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Physical Review E 76, 1–7 (2007)

    Google Scholar 

  3. Huang, Z., Chen, H., Zeng, D.: Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems 22, 116–142 (2004)

    CrossRef  Google Scholar 

  4. Yeung, C.A., Gibbins, N., Shadbolt, N.: A Study of User Profile Generation from Folksonomies. In: Proceedings of the Social Web and Knowledge Management Workshop, Beijing (2008)

    Google Scholar 

  5. Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy mining. In: Proceedings of the Third International Conference on Information Technology, Las Vegas, pp. 388–393 (2006)

    Google Scholar 

  6. Tso-Sutter, K.H.L., Mariho, L.B., Schmidt-Thieme, L.: Tag-aware recommender systems by fusion of collaborative filtering algorithms. In: Proceedings of the 2008 ACM Symposium on Applied Computing, Fortaleza, pp. 1995–1999 (2008)

    Google Scholar 

  7. Peng, J., Zeng, D., Zhao, H., Wang, F.: Collaborative filtering in social tagging systems based on joint item-tag recommendations. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, pp. 809–818 (2010)

    Google Scholar 

  8. Liang, H., Xu, Y., Li, Y., Nayak, R.: Collaborative filtering recommender systems using tag information. In: Proceedings of Web Intelligence/Intelligent Agent Technology Workshops, Sydney, pp. 59–62 (2008)

    Google Scholar 

  9. Marinho, L.B., Nanopoulos, A., Schmidt-Thieme, L., Jäschke, R., Hotho, A., Stumme, G., Symeonidis, P.: Social tagging recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 615–644. Springer, Berlin (2011)

    CrossRef  Google Scholar 

  10. Zhang, Y.C., Medo, M., Ren, J., Zhou, T., Li, T., Yang, F.: Recommendation model based on opinion diffusion. Europhysics Letters 80, 1–5 (2007)

    MathSciNet  Google Scholar 

  11. Liu, J.G., Wang, B.H., Guo, Q.: Improved collaborative filtering algorithm via information transformation. International Journal of Modern Physics C 20, 285–293 (2009)

    CrossRef  MATH  Google Scholar 

  12. Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. Physica A 389, 179–186 (2010)

    CrossRef  Google Scholar 

  13. Gourab, G., Vinko, Z., Guido, C., Newman, M.E.J.: Random hypergraphs and their applications. Physical Review E 9, 1–10 (2009)

    MathSciNet  Google Scholar 

  14. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18, 613–620 (1975)

    CrossRef  MATH  Google Scholar 

  15. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22, 5–53 (2004)

    CrossRef  Google Scholar 

  16. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommendations in Folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506–514. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  17. Herlocker, J.L., Konstan, J.A., Borehers, A., Riedl, J.T.: An Algorithmic Framework for Performing Collaborative Filtering. In: Proceedings of the 22nd ACM Conference on Research and Development in Information Retrieval, Berkeley, pp. 230–237 (1999)

    Google Scholar 

  18. Halpin, H., Robu, V., Shepherd, H.: The Complex Dynamics of Collaborative Tagging. In: Proceedings of the 16th International Conference on World Wide Web, Banff, pp. 211–220 (2007)

    Google Scholar 

  19. Millen, D.R., Feinberg, J.: Using Social Tagging to Improve Social Navigation. In: Workshop on the Social Navigation and Community based Adaptation Technologies, Dublin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, J., Shi, Y., Guo, C. (2011). A Resource Recommendation Method Based on User Taste Diffusion Model in Folksonomies. In: Xiong, H., Lee, W.B. (eds) Knowledge Science, Engineering and Management. KSEM 2011. Lecture Notes in Computer Science(), vol 7091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25975-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25975-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25974-6

  • Online ISBN: 978-3-642-25975-3

  • eBook Packages: Computer ScienceComputer Science (R0)