Application II: Analysis of Molecular Binding

  • Christiane Fuchs
Chapter

Abstract

The genetic material of humans and mammals is mainly contained in their cell nuclei, where most genome regulatory processes like DNA replication or transcription take place. These processes are controlled by complex protein networks.

Keywords

Bayesian Information Criterion Diffusion Approximation Fluorescence Recovery After Photobleaching Innovation Scheme Fluorescence Recovery After Photobleaching Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B, Csaki F (eds) 2nd international symposium on information theory, Akademiai Kiado, pp 267–281. Reprinted, with an introduction by J. deLeeuw, in Breakthroughs in Statistics, Volume I, edited by Samuel Kotz and Norman L. Johnson. Springer, 1992, pp. 599-624Google Scholar
  2. Beaudouin J, Mora-Bermúdez F, Klee T, Daigle N, Ellenberg J (2006) Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys J 90:1878–1894CrossRefGoogle Scholar
  3. Carrero G, Crawford E, Hendzel MJ (2004) Characterizing fluorescence recovery curves for nuclear proteins undergoing binding events. Bull Math Biol 66:1515–1545MathSciNetCrossRefGoogle Scholar
  4. Chen MH, Shao QM (1999) Monte Carlo estimation of Bayesian credible and hpd intervals. J Comput Graph Stat 8:69–92MathSciNetGoogle Scholar
  5. Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90:1313–1321MathSciNetCrossRefMATHGoogle Scholar
  6. Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69:959–993MathSciNetCrossRefMATHGoogle Scholar
  7. Fahrmeir L, Kneib T, Lang S (2009) Regression. Modelle, Methoden und Anwendungen, 2nd edn. Springer, HeidelbergGoogle Scholar
  8. Garcia-Parajo M, Segers-Nolten G, Veerman J, Greve J, van Hulst N (2000) Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules. Proc Natl Acad Sci U S A 97:7237–7242CrossRefGoogle Scholar
  9. Gorski S, Misteli T (2005) Systems biology in the cell nucleus. J Cell Sci 118:4083–4092CrossRefGoogle Scholar
  10. Jeffreys H (1961) Theory of probability. Prentice Hall, PrincetonMATHGoogle Scholar
  11. Kass R, Raftery A (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefMATHGoogle Scholar
  12. Kuch D, Schermelleh L, Manetto S, Leonhardt H, Carell T (2008) Synthesis of DNA dumbbell based inhibitors for the human DNA methyltransferase Dnmt1. Angew Chem Int Ed 47:1515–1518CrossRefGoogle Scholar
  13. Lambert N (2009) Uncoupling diffusion and binding in FRAP experiments. Nat Methods 6:183CrossRefGoogle Scholar
  14. McNally J (2008) Quantitative FRAP in analysis of molecular binding dynamics in vivo. Method Cell Biol 85:329–351CrossRefGoogle Scholar
  15. Mueller F, Wach P, McNally J (2008) Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys J 94:3323–3339CrossRefGoogle Scholar
  16. Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313CrossRefMATHGoogle Scholar
  17. Phair R, Gorski S, Misteli T (2004a) Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Method Enzymol 375:393–414CrossRefGoogle Scholar
  18. Phair R, Scaffidi P, Elbi C, Vecerová J, Dey A, Ozato K, Brown D, Hager G, Bustin M, Misteli T (2004b) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol Cell Biol 24:6393–6402CrossRefGoogle Scholar
  19. Polson N, Roberts G (1994) Bayes factors for discrete observations from diffusion processes. Biometrika 81:11–26MathSciNetCrossRefMATHGoogle Scholar
  20. Schneider K (2009) Analysis of cell cycle dependent kinetics of Dnmt1 by FRAP and kinetic modeling. Diploma Thesis, LMU MunichGoogle Scholar
  21. Schneider K, Fuchs C, Dobay A, Rottach A, Qin W, Álvarez-Castro J, Nalaskowski M, Schmid V, Leonhardt H, Schermelleh L (2012) Dissection of cell cycle dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling (in preparation)Google Scholar
  22. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefMATHGoogle Scholar
  23. Sprague B, McNally J (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15:84–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christiane Fuchs
    • 1
  1. 1.Institute for Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations