Stochastic Differential Equations and Diffusions in a Nutshell

  • Christiane Fuchs


Stochastic differential equations (SDEs) are a powerful and natural tool for the modelling of complex systems that change continuously in time. This chapter provides a short introduction to SDEs and their solutions, which under regularity conditions agree with the class of diffusion processes. In particular, it covers the motivation and introduction of stochastic integrals as opposed to the classical Lebesgue-Stieltjes integral, the definition of diffusion processes, key properties and formulas from stochastic calculus, and finally numerical approximation and exact sampling methods. The chapter serves as a basis for the remaining parts of this book and offers a quick access to stochastic calculus.


Brownian Motion Stochastic Differential Equation Sample Path Transition Density Standard Brownian Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aït-Sahalia Y (2008) Closed-form likelihood expansions for multivariate diffusions. Ann Stat 36:906–937zbMATHCrossRefGoogle Scholar
  2. Alonso D, McKane A, Pascual M (2007) Stochastic amplification in epidemics. J R Soc Interface 4:575–582CrossRefGoogle Scholar
  3. Arnold L (1973) Stochastische Differentialgleichungen. Oldenbourg, MünchenzbMATHGoogle Scholar
  4. Barbour A (1974) On a functional central limit theorem for Markov population processes. Adv Appl Probab 6:21–39MathSciNetzbMATHCrossRefGoogle Scholar
  5. Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P (2006) Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with comments). J R Stat Soc Ser B 68:333–382MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bibby B, Sørensen M (2001) Simplified estimating functions for diffusion models with a high-dimensional parameter. Scand J Stat 28:99–112zbMATHCrossRefGoogle Scholar
  7. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81:637–654CrossRefGoogle Scholar
  8. Capasso V, Morale D (2009) Stochastic modelling of tumour-induced angiogenesis. J Math Biol 58:219–233MathSciNetzbMATHCrossRefGoogle Scholar
  9. Chang CC (1987) Numerical solution of stochastic differential equations with constant diffusion coefficients. Math Comp 49:523–542MathSciNetzbMATHCrossRefGoogle Scholar
  10. Chen WY, Bokka S (2005) Stochastic modeling of nonlinear epidemiology. J Theor Biol 234:455–470MathSciNetCrossRefGoogle Scholar
  11. Chiarella C, Hung H, Tô TD (2009) The volatility structure of the fixed income market under the HJM framework: a nonlinear filtering approach. Comput Stat Data Anal 53:2075–2088zbMATHCrossRefGoogle Scholar
  12. Clancy D, French N (2001) A stochastic model for disease transmission in a managed herd, motivated by Neospora caninum amongst dairy cattle. Math Biosci 170:113–132MathSciNetzbMATHCrossRefGoogle Scholar
  13. Cobb L (1981) Stochastic differential equations for the social sciences. In: Cobb L, Thrall R (eds) Mathematical frontiers of the social and policy sciences. Westview Press, BoulderGoogle Scholar
  14. Cox J, Ingersoll J, Ross S (1985) An intertemporal general equilibrium model of asset prices. Econometrica 53:363–384MathSciNetzbMATHCrossRefGoogle Scholar
  15. de la Lama M, Szendro I, Iglesias J, Wio H (2006) Van Kampen’s expansion approach in an opinion formation model. Eur Phys J B 51:435–442CrossRefGoogle Scholar
  16. Duan J, Gelfand A, Sirmans C (2009) Modeling space-time data using stochastic differential equations. Bayesian Anal 4:413–437MathSciNetCrossRefGoogle Scholar
  17. Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69:959–993MathSciNetzbMATHCrossRefGoogle Scholar
  18. Elf J, Ehrenberg M (2003) Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res 13:2475–2484CrossRefGoogle Scholar
  19. Eraker B (2001) MCMC analysis of diffusion models with application to finance. J Bus Econom Stat 19:177–191MathSciNetCrossRefGoogle Scholar
  20. Fahrmeir L (1976) Approximation von Stochastischen Differentialgleichungen auf Digital- und Hybridrechnern. Computing 16:359–371MathSciNetzbMATHCrossRefGoogle Scholar
  21. Fahrmeir L, Beeck H (1974) Zur Simulation stetiger stochastischer Wirtschaftsmodelle. In: Transactions of the seventh Prague conference and of the European meeting of statisticians, Prague, pp 113–122Google Scholar
  22. Fearnhead P (2006) The stationary distribution of allele frequencies when selection acts at unlinked loci. Theor Popul Biol 70:376–386zbMATHCrossRefGoogle Scholar
  23. Ferm L, Lötstedt P, Hellander A (2008) A hierarchy of approximations of the master equation scaled by a size parameter. J Sci Comput 34:127–151MathSciNetzbMATHCrossRefGoogle Scholar
  24. Fogelson A (1984) A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J Comput Phys 56:111–134MathSciNetzbMATHCrossRefGoogle Scholar
  25. Gard T (1988) Introduction to stochastic differential equations. Monographs and textbooks in pure and applied mathematics, vol 114. Dekker, New YorkGoogle Scholar
  26. Gardiner C (1983) Handbook of stochastic methods. Springer, Berlin/HeidelbergzbMATHCrossRefGoogle Scholar
  27. Golightly A, Wilkinson D (2005) Bayesian inference for stochastic kinetic models using a diffusion approximation. Biometrics 61:781–788MathSciNetzbMATHCrossRefGoogle Scholar
  28. Golightly A, Wilkinson D (2006) Bayesian sequential inference for stochastic kinetic biochemical network models. J Comput Biol 13:838–851MathSciNetCrossRefGoogle Scholar
  29. Golightly A, Wilkinson D (2008) Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput Stat Data Anal 52:1674–1693MathSciNetzbMATHCrossRefGoogle Scholar
  30. Horsthemke W, Lefever R (1984) Noise-induced transitions: theory and applications in physics, chemistry, and biology. Springer, BerlinzbMATHGoogle Scholar
  31. Hufnagel L, Brockmann D, Geisel T (2004) Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci U S A 101:15124–15129CrossRefGoogle Scholar
  32. Itô K (1944) Stochastic integral. Proc Jpn Acad 20:519–524zbMATHCrossRefGoogle Scholar
  33. Itô K (1946) On a stochastic integral equation. Proc Jpn Acad 22:32–35zbMATHCrossRefGoogle Scholar
  34. Karatzas I, Shreve S (1991) Brownian motion and stochastic calculus, 2nd edn. Graduate texts in mathematics. Springer, New YorkzbMATHGoogle Scholar
  35. Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1:177–232zbMATHCrossRefGoogle Scholar
  36. Klebaner F (2005) Introduction to stochastic calculus with applications, 2nd edn. Imperial College Press, LondonzbMATHGoogle Scholar
  37. Kloeden P, Platen E (1991) Stratonovich and Itô stochastic Taylor expansions. Math Nachr 151:33–50MathSciNetzbMATHCrossRefGoogle Scholar
  38. Kloeden P, Platen E (1999) Numerical solution of stochastic differential equations, 3rd edn. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  39. Kutoyants Y (2004) Statistical inference for ergodic diffusion processes. Springer series in statistics. Springer, LondonzbMATHGoogle Scholar
  40. Leung H (1985) Expansion of the master equation for a biomolecular selection model. Bull Math Biol 47:231–238MathSciNetzbMATHGoogle Scholar
  41. McNeil D (1973) Diffusion limits for congestion models. J Appl Probab 10:368–376MathSciNetzbMATHCrossRefGoogle Scholar
  42. Merton R (1976) Option pricing when underlying stock returns are discontinuous. J Finan Econ 3:125–144zbMATHCrossRefGoogle Scholar
  43. Newton N (1991) Asymptotically efficient Runge-Kutta methods for a class of Itô and Stratonovich equations. SIAM J Appl Math 51:542–567MathSciNetzbMATHCrossRefGoogle Scholar
  44. Øksendal B (2003) Stochastic differential equations. An introduction with applications, 6th edn. Springer, Berlin/HeidelbergGoogle Scholar
  45. Papaspiliopoulos O, Roberts G, Sköld M (2003) Non-centered parameterisations for hierarchical models and data augmentation (with discussion). In: Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M (eds) Bayesian statistics 7. Lecture notes in computer science, vol 4699. Oxford University Press, Oxford, pp 307–326Google Scholar
  46. Protter P (1990) Stochastic integration and differential equations. Applications of mathematics, vol 21. Springer, Berlin/HeidelbergGoogle Scholar
  47. Ramshaw J (1985) Augmented Langevin approach to fluctuations in nonlinear irreversible processes. J Statist Phys 38:669–680MathSciNetCrossRefGoogle Scholar
  48. Revuz D, Yor M (1991) Continuous martingales and Brownian motion. A series of comprehensive studies in mathematics, vol 293. Springer, Berlin/HeidelbergGoogle Scholar
  49. Robinson E (1959) A stochastic diffusion theory of price. Econometrica 27:679–684MathSciNetzbMATHCrossRefGoogle Scholar
  50. Rümelin W (1982) Numerical treatment of stochastic differential equations. SIAM J Numer Anal 19:604–613MathSciNetzbMATHCrossRefGoogle Scholar
  51. Seifert U (2008) Stochastic thermodynamics: principles and perspectives. Eur Phys J B 64:423–431zbMATHCrossRefGoogle Scholar
  52. Sjöberg P, Lötstedt P, Elf J (2009) Fokker-Planck approximation of the master equation in molecular biology. Comput Vis Sci 12:37–50MathSciNetCrossRefGoogle Scholar
  53. Stratonovich R (1966) A new representation for stochastic integrals and equations. SIAM J Control Optim 4:362–371MathSciNetCrossRefGoogle Scholar
  54. Stratonovich R (1989) Some Markov methods in the theory of stochastic processes in nonlinear dynamical systems. In: Moss F, McClintock P (eds) Noise in nonlinear dynamical systems. Theory of continuous Fokker-Planck systems, vol 1. Cambridge University Press, Cambridge, pp 16–71Google Scholar
  55. Stroock D, Varadhan S (1979) Multidimensional diffusion processes. A series of comprehensive studies in mathematics, vol 233. Springer, New YorkGoogle Scholar
  56. Tian T, Burrage K, Burrage P, Carletti M (2007) Stochastic delay differential equations for genetic regulatory networks. J Comput Appl Math 205:696–707MathSciNetzbMATHCrossRefGoogle Scholar
  57. Tuckwell H (1987) Diffusion approximations to channel noise. J Theor Biol 127:427–438MathSciNetCrossRefGoogle Scholar
  58. van Kampen N (1965) Fluctuations in nonlinear systems. In: Burgess R (ed) Fluctuation phenomena in solids. Academic, New York, pp 139–177Google Scholar
  59. van Kampen N (1981) The validity of nonlinear Langevin equations. J Stat Phys 25:431–442CrossRefGoogle Scholar
  60. Walsh J (1981) A stochastic model of neural response. Adv Appl Probab 13:231–281zbMATHCrossRefGoogle Scholar
  61. Wiener N (1923) Differential space. J Math Phys 2:131–174Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christiane Fuchs
    • 1
  1. 1.Institute for Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations