Skip to main content

The Circadian Control of Sleep

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 217)

Abstract

The sleep/wake cycle is arguably the most familiar output of the circadian system, however, sleep is a complex biological process that arises from multiple brain regions and neurotransmitters, which is regulated by numerous physiological and environmental factors. These include a circadian drive for wakefulness as well as an increase in the requirement for sleep with prolonged waking (the sleep homeostat). In this chapter, we describe the regulation of sleep, with a particular emphasis on the contribution of the circadian system. Since their identification, the role of clock genes in the regulation of sleep has attracted considerable interest, and here, we provide an overview of the interplay between specific elements of the molecular clock with the sleep regulatory system. Finally, we summarise the role of the light environment, melatonin and social cues in the modulation of sleep, with a focus on the role of melanopsin ganglion cells.

Keywords

  • Sleep
  • Circadian
  • Clock gene
  • Melatonin
  • Melanopsin

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25950-0_7
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-25950-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  • Abe M, Herzog ED, Yamazaki S, Straume M, Tei H et al (2002) Circadian rhythms in isolated brain regions. J Neurosci 22:350–356

    PubMed  CAS  Google Scholar 

  • Abou-Ismail UA, Burman OH, Nicol CJ, Mendl M (2010) The effects of enhancing cage complexity on the behaviour and welfare of laboratory rats. Behav Process 85:172–180

    CrossRef  Google Scholar 

  • Akanmu MA, Songkram C, Kagechika H, Honda K (2004) A novel melatonin derivative modulates sleep/wake cycle in rats. Neurosci Lett 364:199–202

    PubMed  CAS  CrossRef  Google Scholar 

  • Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105:19998–20003

    PubMed  CAS  CrossRef  Google Scholar 

  • Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT et al (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13:1107–1112

    PubMed  CAS  CrossRef  Google Scholar 

  • Archer SN, Carpen JD, Gibson M, Lim GH, Johnston JD et al (2010) Polymorphism in the PER3 promoter associates with diurnal preference and delayed sleep phase disorder. Sleep 33:695–701

    PubMed  Google Scholar 

  • Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536

    PubMed  CAS  CrossRef  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep/wake regulation. Prog Neurobiol 73:379–396

    PubMed  CAS  CrossRef  Google Scholar 

  • Benca RM, Gilliland MA, Obermeyer WH (1998) Effects of lighting conditions on sleep and wakefulness in albino Lewis and pigmented Brown Norway rats. Sleep 21:451–460

    PubMed  CAS  Google Scholar 

  • Borbely AA (1978) Effects of light on sleep and activity rhythms. Prog Neurobiol 10:1–31

    PubMed  CAS  CrossRef  Google Scholar 

  • Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1:195–204

    PubMed  CAS  Google Scholar 

  • Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14:557–568

    PubMed  CAS  Google Scholar 

  • Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–495

    PubMed  CAS  CrossRef  Google Scholar 

  • Brown TM, Colwell CS, Waschek JA, Piggins HD (2007) Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. J Neurophysiol 97:2553–2558

    PubMed  CAS  CrossRef  Google Scholar 

  • Brzezinski A, Vangel MG, Wurtman RJ, Norrie G, Zhdanova I et al (2005) Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9:41–50

    PubMed  CrossRef  Google Scholar 

  • Buhr ED, Takahashi JS (2013) Molecular components of the mammalian circadian clock. In: Kramer A, Merrow M (eds) Circadian clocks, vol 217, Handbook of experimental pharmacology. Springer, Heidelberg

    Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA et al (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    PubMed  CAS  CrossRef  Google Scholar 

  • Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L et al (2006) Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 332:385–393

    PubMed  CAS  CrossRef  Google Scholar 

  • Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464

    PubMed  CAS  CrossRef  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43

    PubMed  CAS  CrossRef  Google Scholar 

  • Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED (1980) Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2:329–346

    PubMed  CAS  Google Scholar 

  • Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090

    PubMed  CAS  CrossRef  Google Scholar 

  • Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262

    PubMed  Google Scholar 

  • Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50:465–477

    PubMed  CAS  CrossRef  Google Scholar 

  • DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10:543–545

    PubMed  CAS  CrossRef  Google Scholar 

  • Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130:165–183

    PubMed  CAS  CrossRef  Google Scholar 

  • Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166:63–68

    PubMed  CAS  CrossRef  Google Scholar 

  • Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15:3526–3538

    PubMed  CAS  Google Scholar 

  • Dijk DJ, Duffy JF (1999) Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics. Ann Med 31:130–140

    PubMed  CAS  CrossRef  Google Scholar 

  • Dijk DJ, Lockley SW (2002) Integration of human sleep/wake regulation and circadian rhythmicity. J Appl Physiol 92:852–862

    PubMed  Google Scholar 

  • Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P et al (2003) Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383

    PubMed  CAS  CrossRef  Google Scholar 

  • Eastman CI, Mistlberger RE, Rechtschaffen A (1984) Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav 32:357–368

    PubMed  CAS  CrossRef  Google Scholar 

  • Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27:1307–1318

    PubMed  Google Scholar 

  • Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep/wake regulation. J Neurosci 13:1065–1079

    PubMed  CAS  Google Scholar 

  • Finelli LA, Baumann H, Borbely AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101:523–529

    PubMed  CAS  CrossRef  Google Scholar 

  • Fisher SP, Sugden D (2009) Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat. Neurosci Lett 457:93–96

    PubMed  CAS  CrossRef  Google Scholar 

  • Fisher SP, Sugden D (2010) Endogenous melatonin is not obligatory for the regulation of the rat sleep/wake cycle. Sleep 33:833–840

    PubMed  Google Scholar 

  • Fisher SP, Davidson K, Kulla A, Sugden D (2008) Acute sleep-promoting action of the melatonin agonist, ramelteon, in the rat. J Pineal Res 45:125–132

    PubMed  CAS  CrossRef  Google Scholar 

  • Franken P, Malafosse A, Tafti M (1999) Genetic determinants of sleep regulation in inbred mice. Sleep 22:155–169

    PubMed  CAS  Google Scholar 

  • Franken P, Lopez-Molina L, Marcacci L, Schibler U, Tafti M (2000) The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 20:617–625

    PubMed  CAS  Google Scholar 

  • Franken P, Dudley CA, Estill SJ, Barakat M, Thomason R et al (2006) NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci USA 103:7118–7123

    PubMed  CAS  CrossRef  Google Scholar 

  • Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87

    PubMed  CrossRef  CAS  Google Scholar 

  • Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J et al (2000) Impaired cued and contextual memory in NPAS2-deficient mice. Science 288:2226–2230

    PubMed  CAS  CrossRef  Google Scholar 

  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD et al (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    PubMed  CAS  CrossRef  Google Scholar 

  • Gerashchenko D, Wisor JP, Burns D, Reh RK, Shiromani PJ et al (2008) Identification of a population of sleep-active cerebral cortex neurons. Proc Natl Acad Sci USA 105:10227–10232

    PubMed  CAS  CrossRef  Google Scholar 

  • Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556:935–946

    PubMed  CAS  CrossRef  Google Scholar 

  • Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105

    PubMed  CrossRef  CAS  Google Scholar 

  • Hankins MW, Peirson SN, Foster RG (2008) Melanopsin: an exciting photopigment. Trends Neurosci 31:27–36

    PubMed  CAS  CrossRef  Google Scholar 

  • Hasan S, van der Veen DR, Winsky-Sommerer R, Dijk DJ, Archer SN (2011) Altered sleep and behavioral activity phenotypes in PER3-deficient mice. Am J Physiol Regul Integr Comp Physiol 301(6):R1821–30

    PubMed  CAS  CrossRef  Google Scholar 

  • He Y, Jones CR, Fujiki N, Xu Y, Guo B et al (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325:866–870

    PubMed  CAS  CrossRef  Google Scholar 

  • Holmes SW, Sugden D (1982) Effects of melatonin on sleep and neurochemistry in the rat. Br J Pharmacol 76:95–101

    PubMed  CAS  CrossRef  Google Scholar 

  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F et al (2002) Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844

    PubMed  CAS  CrossRef  Google Scholar 

  • Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30:247–256

    PubMed  Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    PubMed  CAS  CrossRef  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38

    PubMed  CAS  CrossRef  Google Scholar 

  • Huber R, Deboer T, Schwierin B, Tobler I (1998) Effect of melatonin on sleep and brain temperature in the Djungarian hamster and the rat. Physiol Behav 65:77–82

    PubMed  CAS  CrossRef  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    PubMed  CAS  CrossRef  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA et al (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9:1169–1176

    PubMed  CAS  CrossRef  Google Scholar 

  • Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116:260–272

    PubMed  CAS  CrossRef  Google Scholar 

  • Kaushal N, Nair D, Gozal D, Ramesh V (2012) Socially isolated mice exhibit a blunted homeostatic sleep response to acute sleep deprivation compared to socially paired mice. Brain Res 1454:65–79. doi: 10.1016/j.brainres.2012.03.019

    PubMed  CAS  CrossRef  Google Scholar 

  • King VM, Chahad-Ehlers S, Shen S, Harmar AJ, Maywood ES, Hastings MH (2003) A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. Eur J Neurosci 17(11):822–832

    CrossRef  Google Scholar 

  • Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16:1099–1106

    PubMed  CrossRef  Google Scholar 

  • Korf HW, Schomerus C, Stehle JH (1998) The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol 146:1–100

    PubMed  CAS  CrossRef  Google Scholar 

  • Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM et al (2010) Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66:417–428

    PubMed  CAS  CrossRef  Google Scholar 

  • Lancel M, van Riezen H, Glatt A (1991) Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat. Brain Res 548:206–214

    PubMed  CAS  CrossRef  Google Scholar 

  • Landgraf D, Shostak A, Oster H (2012) Clock genes and sleep. Pflugers Arch 463(1):3–14

    PubMed  CAS  CrossRef  Google Scholar 

  • Landolt HP, Rétey JV, Tönz K, Gottselig JM, Khatami R, Buckelmüller I, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29:1933–1939

    PubMed  CAS  CrossRef  Google Scholar 

  • Langebartels A, Mathias S, Lancel M (2001) Acute effects of melatonin on spontaneous and picrotoxin-evoked sleep/wake behaviour in the rat. J Sleep Res 10:211–217

    PubMed  CAS  CrossRef  Google Scholar 

  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28:395–409

    PubMed  Google Scholar 

  • Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287:R104–R111

    PubMed  CAS  CrossRef  Google Scholar 

  • Le Bon O, Staner L, Hoffmann G, Dramaix M, San Sebastian I et al (2001) The first-night effect may last more than one night. J Psychiatr Res 35:165–172

    PubMed  CrossRef  Google Scholar 

  • Li JD, Hu WP, Boehmer L, Cheng MY, Lee AG et al (2006) Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci 26:11615–11623

    PubMed  CAS  CrossRef  Google Scholar 

  • Liu J, Wang LN (2012) Ramelteon in the treatment of chronic insomnia: systematic review and meta-analysis. Int J Clin Pract 66:867–873

    PubMed  CAS  CrossRef  Google Scholar 

  • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762–6771

    PubMed  CAS  CrossRef  Google Scholar 

  • Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11:1068–1073

    PubMed  CAS  CrossRef  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H et al (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    PubMed  CAS  CrossRef  Google Scholar 

  • Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA 104:20090–20095

    PubMed  CAS  CrossRef  Google Scholar 

  • Meerlo P, Turek FW (2001) Effects of social stimuli on sleep in mice: non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction. Brain Res 907:84–92

    PubMed  CAS  CrossRef  Google Scholar 

  • Meerlo P, Pragt BJ, Daan S (1997) Social stress induces high intensity sleep in rats. Neurosci Lett 225:41–44

    PubMed  CAS  CrossRef  Google Scholar 

  • Meerlo P, de Bruin EA, Strijkstra AM, Daan S (2001) A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol Behav 73:331–335

    PubMed  CAS  CrossRef  Google Scholar 

  • Mendelson WB, Bergmann BM (2001) Effects of pinealectomy on baseline sleep and response to sleep deprivation. Sleep 24:369–373

    PubMed  CAS  Google Scholar 

  • Michaud JC, Muyard JP, Capdevielle G, Ferran E, Giordano-Orsini JP et al (1982) Mild insomnia induced by environmental perturbations in the rat: a study of this new model and of its possible applications in pharmacological research. Arch Int Pharmacodyn Ther 259:93–105

    PubMed  CAS  Google Scholar 

  • Mirmiran M, Pevet P (1986) Effects of melatonin and 5-methoxytryptamine on sleep/wake patterns in the male rat. J Pineal Res 3:135–141

    PubMed  CAS  CrossRef  Google Scholar 

  • Mirmiran M, van den Dungen H, Uylings HB (1982) Sleep patterns during rearing under different environmental conditions in juvenile rats. Brain Res 233:287–298

    PubMed  CAS  CrossRef  Google Scholar 

  • Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6:217–233

    PubMed  CAS  Google Scholar 

  • Mistlberger RE, Bergmann BM, Rechtschaffen A (1987) Relationships among wake episode lengths, contiguous sleep episode lengths, and electroencephalographic delta waves in rats with suprachiasmatic nuclei lesions. Sleep 10:12–24

    PubMed  CAS  Google Scholar 

  • Miyamoto M (2006) Effect of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist, on motor performance in mice. Neurosci Lett 402:201–204

    PubMed  CAS  CrossRef  Google Scholar 

  • Miyamoto M, Nishikawa H, Doken Y, Hirai K, Uchikawa O, Ohkawa S (2004) The sleep-promoting action of ramelteon (TAK-375) in freely moving cats. Sleep 27:1319–1325

    PubMed  Google Scholar 

  • Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One 6:e26622

    PubMed  CAS  CrossRef  Google Scholar 

  • Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42(11):2783–2789

    PubMed  CAS  Google Scholar 

  • Mouret J, Coindet J, Debilly G, Chouvet G (1978) Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 45:402–408

    PubMed  CAS  CrossRef  Google Scholar 

  • Mrosovsky N (2001) Further characterization of the phenotype of mCry1/mCry2-deficient mice. Chronobiol Int 18:613–625

    PubMed  CAS  CrossRef  Google Scholar 

  • Mrosovsky N, Edelstein K, Hastings MH, Maywood ES (2001) Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms 16:471–478

    PubMed  CAS  CrossRef  Google Scholar 

  • Murphy M, Huber R, Esser S, Riedner BA, Massimini M et al (2011) The cortical topography of local sleep. Curr Top Med Chem 11(19):2438–46

    PubMed  CAS  CrossRef  Google Scholar 

  • Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20:8138–8143

    PubMed  CAS  Google Scholar 

  • O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. In: Kramer A, Merrow M (eds) Circadian clocks, Handbook of experimental pharmacology 217. Springer, Heidelberg

    Google Scholar 

  • Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S et al (2011) Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31:18439–18452

    PubMed  CAS  CrossRef  Google Scholar 

  • Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A et al (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286:2531–2534

    PubMed  CAS  CrossRef  Google Scholar 

  • Oliver PL, Sobczyk MV, Maywood ES, Edwards B, Lee S et al (2012) Disrupted circadian rhythms in a mouse model of schizophrenia. Curr Biol 22:314–319

    PubMed  CAS  CrossRef  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Maestroni GJ, Cardinali DP, Poeggeler B, Hardeland R (2006) Melatonin: nature’s most versatile biological signal? FEBS J 273:2813–2838

    PubMed  CAS  CrossRef  Google Scholar 

  • Pasumarthi RK, Gerashchenko D, Kilduff TS (2010) Further characterization of sleep-active neuronal nitric oxide synthase neurons in the mouse brain. Neuroscience 169:149–157

    PubMed  CAS  CrossRef  Google Scholar 

  • Peirson SN, Foster RG (2011) Bad light stops play. EMBO Rep 12:380

    PubMed  CAS  CrossRef  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    PubMed  CAS  CrossRef  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    PubMed  CAS  CrossRef  Google Scholar 

  • Portas CM, Thakkar M, Rainnie DG, Greene RW, McCarley RW (1997) Role of adenosine in behavioral state modulation: a microdialysis study in the freely moving cat. Neuroscience 79:225–235

    PubMed  CAS  CrossRef  Google Scholar 

  • Pritchett D, Wulff K, Oliver PL, Bannerman DM, Davies KE et al (2012) Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. J Neural Transm 119(10):1061–75

    PubMed  CrossRef  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978

    PubMed  CAS  CrossRef  Google Scholar 

  • Reick M, Garcia JA, Dudley C, McKnight SL (2001) NPAS2: an analog of clock operative in the mammalian forebrain. Science 293:506–509

    PubMed  CAS  CrossRef  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    PubMed  CAS  CrossRef  Google Scholar 

  • Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689

    PubMed  CAS  Google Scholar 

  • Rosenwasser AM (2010) Circadian clock genes: non-circadian roles in sleep, addiction, and psychiatric disorders? Neurosci Biobehav Rev 34:1249–1255

    PubMed  CrossRef  Google Scholar 

  • Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC et al (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS One 3:e2762

    PubMed  CrossRef  CAS  Google Scholar 

  • Roth T, Stubbs C, Walsh JK (2005) Ramelteon (TAK-375), a selective MT1/MT2-receptor agonist, reduces latency to persistent sleep in a model of transient insomnia related to a novel sleep environment. Sleep 28:303–307

    PubMed  Google Scholar 

  • Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411

    PubMed  CAS  CrossRef  Google Scholar 

  • Rusterholz T, Achermann P (2011) Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci 12:84

    PubMed  CrossRef  Google Scholar 

  • Satoh S, Matsumura H, Suzuki F, Hayaishi O (1996) Promotion of sleep mediated by the A2a-adenosine receptor and possible involvement of this receptor in the sleep induced by prostaglandin D2 in rats. Proc Natl Acad Sci USA 93:5980–5984

    PubMed  CAS  CrossRef  Google Scholar 

  • Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV et al (2001) An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107:653–663

    PubMed  CAS  CrossRef  Google Scholar 

  • Shamir E, Rotenberg VS, Laudon M, Zisapel N, Elizur A (2000) First-night effect of melatonin treatment in patients with chronic schizophrenia. J Clin Psychopharmacol 20:691–694

    PubMed  CAS  CrossRef  Google Scholar 

  • Shearman LP, Jin X, Lee C, Reppert SM, Weaver DR (2000) Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol Cell Biol 20:6269–6275

    PubMed  CAS  CrossRef  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    PubMed  CAS  CrossRef  Google Scholar 

  • Sheward WJ, Naylor E, Knowles-Barley S, Armstrong JD, Brooker GA et al (2010) Circadian control of mouse heart rate and blood pressure by the suprachiasmatic nuclei: behavioral effects are more significant than direct outputs. PLoS One 5:e9783

    PubMed  CrossRef  CAS  Google Scholar 

  • Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR (2004) Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287:R47–R57

    PubMed  CAS  CrossRef  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69(6):1583–1586

    PubMed  CAS  CrossRef  Google Scholar 

  • Tang X, Xiao J, Parris BS, Fang J, Sanford LD (2005) Differential effects of two types of environmental novelty on activity and sleep in BALB/cJ and C57BL/6J mice. Physiol Behav 85:419–429

    PubMed  CAS  CrossRef  Google Scholar 

  • Tobler I (1995) Is sleep fundamentally different between mammalian species? Behav Brain Res 69:35–41

    PubMed  CAS  CrossRef  Google Scholar 

  • Tobler I, Borbely AA, Groos G (1983) The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci Lett 42:49–54

    PubMed  CAS  CrossRef  Google Scholar 

  • Tobler I, Jaggi K, Borbely AA (1994) Effects of melatonin and the melatonin receptor agonist S-20098 on the vigilance states, EEG spectra, and cortical temperature in the rat. J Pineal Res 16:26–32

    PubMed  CAS  CrossRef  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62

    PubMed  CrossRef  Google Scholar 

  • Tsai JW, Hannibal J, Hagiwara G, Colas D, Ruppert E et al (2009) Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(−/−) mice. PLoS Biol 7:e1000125

    PubMed  CrossRef  CAS  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308:1043–1045

    PubMed  CAS  CrossRef  Google Scholar 

  • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630

    PubMed  CrossRef  Google Scholar 

  • van der Veen DR, Archer SN (2010) Light-dependent behavioral phenotypes in PER3-deficient mice. J Biol Rhythms 25:3–8

    PubMed  CrossRef  Google Scholar 

  • Viola AU, Archer SN, James LM, Groeger JA, Lo JC et al (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17:613–618

    PubMed  CAS  CrossRef  Google Scholar 

  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL et al (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    PubMed  CAS  CrossRef  Google Scholar 

  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119

    PubMed  CAS  CrossRef  Google Scholar 

  • Vyazovskiy VV, Tobler I (2005) Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res 1050:64–71

    PubMed  CAS  CrossRef  Google Scholar 

  • Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472:443–447

    PubMed  CAS  CrossRef  Google Scholar 

  • Wang F, Li JC, Wu CF, Yang JY, Zhang RM, Chai HF (2003) Influences of a light/dark profile and the pineal gland on the hypnotic activity of melatonin in mice and rats. J Pharm Pharmacol 55:1307–1312

    PubMed  CAS  CrossRef  Google Scholar 

  • Weaver DR (1998) The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13:100–112

    PubMed  CAS  CrossRef  Google Scholar 

  • Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20

    PubMed  CrossRef  Google Scholar 

  • Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S et al (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28:7193–7201

    PubMed  CAS  CrossRef  Google Scholar 

  • Wulff K, Porcheret K, Cussans E, Foster RG (2009) Sleep and circadian rhythm disturbances: multiple genes and multiple phenotypes. Curr Opin Genet Dev 19:237–246

    PubMed  CAS  CrossRef  Google Scholar 

  • Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamanaka Y, Suzuki Y, Todo T, Honma K, Honma S (2010) Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice. Genes Cells 15:1063–1071

    PubMed  CAS  CrossRef  Google Scholar 

  • Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482

    CrossRef  Google Scholar 

  • Yukuhiro N, Kimura H, Nishikawa H, Ohkawa S, Yoshikubo S, Miyamoto M (2004) Effects of ramelteon (TAK-375) on nocturnal sleep in freely moving monkeys. Brain Res 1027:59–66

    PubMed  CAS  CrossRef  Google Scholar 

  • Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG (2009) Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res 18:3–10

    PubMed  CrossRef  Google Scholar 

  • Zhdanova IV (2005) Melatonin as a hypnotic: pro. Sleep Med Rev 9:51–65

    PubMed  CrossRef  Google Scholar 

  • Zlotos DP (2012) Recent progress in the development of agonists and antagonists for melatonin receptors. Curr Med Chem 19:3532–3549

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laurence Brown for preparation of Fig. 3. The authors work is funded by a Wellcome Trust Programme Grant (awarded to RGF) and a BBSRC project grant (awarded to SNP). SPF was supported by a Knoop Junior Research Fellowship (St Cross, Oxford).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Russell G. Foster or Stuart N. Peirson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fisher, S.P., Foster, R.G., Peirson, S.N. (2013). The Circadian Control of Sleep. In: Kramer, A., Merrow, M. (eds) Circadian Clocks. Handbook of Experimental Pharmacology, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25950-0_7

Download citation