Skip to main content

Light and the Human Circadian Clock

Part of the Handbook of Experimental Pharmacology book series (HEP,volume 217)

Abstract

The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light–dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field’s pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.

Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many ‘experimental’ conditions provided by the real world, such as daylight savings time, the ‘forced synchrony’ imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly ‘forced synchrony’.

Keywords

  • Chronotype
  • Entrainment
  • Sleep
  • Zeitgeber
  • Zeitnehmer
  • Free-running period
  • Clock evolution

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-25950-0_13
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-25950-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abraham U, Granada AANE, Westermark PALO, Heine M, Herzel H, Kramer A (2010) Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6:1–13

    CrossRef  Google Scholar 

  • Agez L, Laurent V, Guerrero HY, Pevet P, Masson-Pevet M, Gauer F (2009) Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J Pineal Res 46:95–105

    PubMed  CrossRef  CAS  Google Scholar 

  • Allebrandt KV, Teder-Laving M, Akyol M, Pichler I, Muller-Myhsok B, Pramstaller P, Merrow M, Meitinger T, Metspalu A, Roenneberg T (2011a) CLOCK gene variants associate with sleep duration in two independent populations. Biol Psychiatry 67:1040–1047

    CrossRef  Google Scholar 

  • Allebrandt KV, Amin N, Muller-Myhsok B, Esko T, Teder-Laving M, Azevedo RV, Hayward C, van Mill J, Vogelzangs N, Green EW, Melville SA, Lichtner P, Wichmann HE, Oostra BA, Janssens AC, Campbell H, Wilson JF, Hicks AA, Pramstaller PP, Dogas Z, Rudan I, Merrow M, Penninx B, Kyriacou CP, Metspalu A, van Duijn CM, Meitinger T, Roenneberg T (2011b) A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry. doi:10.1038/mp.2011.142

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    PubMed  CrossRef  CAS  Google Scholar 

  • Bachleitner W, Kempinger L, Wulbeck C, Rieger D, Helfrich-Forster C (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci USA 104:3538–3543

    PubMed  CrossRef  CAS  Google Scholar 

  • Baggs JE, Price TS, DiTacchio L, Panda S, FitzGerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7:e52

    PubMed  CrossRef  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown SA, Kunz D, Dumas A, Westermark PO, Vanselow K, Tilmann-Wahnschaffe A, Herzel H, Kramer A (2008) Molecular insights into human daily behavior. Proc Natl Acad Sci USA 105:1602–1607

    PubMed  CrossRef  CAS  Google Scholar 

  • Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385

    PubMed  CrossRef  CAS  Google Scholar 

  • Bünning E (1960) Circadian rhythms and the time measurement in photoperiodism. Cold Spring Harb Symp Quant Biol 25:249–256

    CrossRef  Google Scholar 

  • Carskadon MA (2011) Sleep in adolescents: the perfect storm. Pediatr Clin North Am 58:637–647

    PubMed  CrossRef  Google Scholar 

  • Chang AM, Reid KJ, Gourineni R, Zee PC (2009) Sleep timing and circadian phase in delayed sleep phase syndrome. J Biol Rhythms 24:313–321

    PubMed  CrossRef  Google Scholar 

  • Comas M, Beersma DG, Spoelstra K, Daan S (2006) Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J Biol Rhythms 21:362–372

    PubMed  CrossRef  CAS  Google Scholar 

  • Comas M, Beersma DG, Spoelstra K, Daan S (2007) Circadian response reduction in light and response restoration in darkness: a “skeleton” light pulse PRC study in mice (Mus musculus). J Biol Rhythms 22:432–444

    PubMed  CrossRef  CAS  Google Scholar 

  • Comas M, Beersma DG, Hut RA, Daan S (2008) Circadian phase resetting in response to light–dark and dark–light transitions. J Biol Rhythms 23:425–434

    PubMed  CrossRef  CAS  Google Scholar 

  • Czeisler CA, Shanahan TL, Kerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332:6–55

    PubMed  CrossRef  CAS  Google Scholar 

  • Czeisler CA, Allan JS, Strogatz SH, Ronda JM, Sanchez R, Rios CD, Freitag WO, Richardson GS, Kronauer RE (1986) Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. Science 233:667–671

    PubMed  CrossRef  CAS  Google Scholar 

  • Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchel JF, Rimmer DW, Ronda JM, Silva EJ, Allan JS, Emens JS, Dijk D-J, Kronauer RE (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284:2177–2181

    PubMed  CrossRef  CAS  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents: II. The variability of phase response curves. J Comp Physiol A 106:253–266

    CrossRef  Google Scholar 

  • Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M, Daan B, Rienks F, Poletaeva I, Dell’Omo G, Vyssotski A, Lipp HP (2011) Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J Biol Rhythms 26:118–129

    PubMed  CrossRef  Google Scholar 

  • De Mairan JJdO (1729) Observation botanique. Histoir de l’Academie Royale des Science:35–36

    Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    PubMed  CrossRef  CAS  Google Scholar 

  • Duffy JF, Zeitzer JM, Rimmer DW, Klerman EB, Dijk DJ, Czeisler CA (2002) Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol Endocrinol Metab 282:E297–303

    PubMed  CAS  Google Scholar 

  • Edmunds LN Jr (1984) Cell cycle clocks. Marcel Dekker, New York

    Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, Foster RG (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    PubMed  CrossRef  CAS  Google Scholar 

  • Frisch K (1967) The dance language and orientation of bees. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    PubMed  Google Scholar 

  • Hagenauer MH, Lee TM (2012) The neuroendocrine control of the circadian system: adolescent chronotype. Front Neuroendocrinol 33:211–229

    PubMed  CrossRef  CAS  Google Scholar 

  • Hastings JW, Sweeney BM (1957) On the mechanism of temperature independence in a biological clock. Proc Natl Acad Sci USA 43:804–811

    PubMed  CrossRef  CAS  Google Scholar 

  • Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–458

    CrossRef  Google Scholar 

  • Honma K, Hashimoto S, Nakao M, Honma S (2003) Period and phase adjustments of human circadian rhythms in the real world. J Biol Rhythms 18:261–270

    PubMed  CrossRef  Google Scholar 

  • Horne JA, Östberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97–110

    PubMed  CAS  Google Scholar 

  • Huang W, Ramsey KM, Marcheva B, Bass J (2011) Circadian rhythms, sleep, and metabolism. J Clin Invest 121:2133–2141

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnson CH, Golden SS, Ishiura M, Kondo T (1996) Circadian clocks in prokaryotes. Mol Microbiol 21:5–11

    PubMed  CrossRef  CAS  Google Scholar 

  • Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptacek LJ (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062–1065

    PubMed  CrossRef  CAS  Google Scholar 

  • Kantermann T, Juda M, Merrow M, Roenneberg T (2007) The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr Biol 17(22):1996–2000. doi:10.1016/j.cub.2007.10.025

    PubMed  CrossRef  CAS  Google Scholar 

  • Klerman EB, Dijk D-J (2005) Interindividual variation in sleep duration and its association with sleep debt in young adults. Sleep 28:1253–1259

    PubMed  Google Scholar 

  • Klerman EB, Rimmer DW, Dijk D-J, Kronauer RE, Rizzo JFI, Czeisler CA (1998) Nonphotic entrainment of the human circadian pacemaker. Am J Physiol 274:R991–R996

    PubMed  CAS  Google Scholar 

  • Kramer G (1952) Experiments on bird orientation. Ibis 94:265–285

    CrossRef  Google Scholar 

  • Kuroda H, Fukushima M, Nakai M, Katayama T, Murakami N (1997) Daily wheel running activity modifies the period of free-running rhythm in rats via intergeniculate leaflet. Physiol Behav 61:633–637

    PubMed  CrossRef  CAS  Google Scholar 

  • Lockley SW, Skene DJ, Tabandeh H, Bird AC, Defrance R, Arendt J (1997) Relationship between napping and melatonin in the blind. J Biol Rhythms 12:16–25

    PubMed  CrossRef  CAS  Google Scholar 

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    PubMed  CrossRef  CAS  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720

    PubMed  CrossRef  CAS  Google Scholar 

  • Merrow M, Brunner M, Roenneberg T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399:584–586

    PubMed  CrossRef  CAS  Google Scholar 

  • Mistlberger RE, Skene DJ (2005) Nonphotic entrainment in humans? J Biol Rhythms 20:339–352

    PubMed  CrossRef  Google Scholar 

  • Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    CrossRef  CAS  Google Scholar 

  • Mongrain V, Lavoie S, Selmaoui B, Paquet J, Dumont M (2004) Phase relationships between sleep-wake cycle and underlying circadian rhythms in morningness-eveningness. J Biol Rhythms 19:248–257

    PubMed  CrossRef  Google Scholar 

  • O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature 469:498–503

    PubMed  CrossRef  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, Reddy AB, Millar AJ (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    PubMed  CrossRef  Google Scholar 

  • Peschel N, Helfrich-Forster C (2011) Setting the clock–by nature: circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett 585:1435–1442

    PubMed  CrossRef  CAS  Google Scholar 

  • Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol 25:159–184

    PubMed  CrossRef  CAS  Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:17–54

    CrossRef  Google Scholar 

  • Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents: I.-V. (the five papers make up one issue with alternating authorship). J Comp Physiol A 106:223–355

    CrossRef  Google Scholar 

  • Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    PubMed  CrossRef  CAS  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    PubMed  CAS  Google Scholar 

  • Rea MA (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol Int 15:395–423

    PubMed  CrossRef  CAS  Google Scholar 

  • Rémi J, Merrow M, Roenneberg T (2010) A circadian surface of entrainment: varying T, τ and photoperiod in Neurospora crassa. J Biol Rhythms 25:318–328

    PubMed  CrossRef  Google Scholar 

  • Roenneberg T, (2012) What is chronotype? Sleep and Biological Rhythms, 10(2), 75–76. doi:10.1111/j.1479-8425.2012.00541.x

    CrossRef  Google Scholar 

  • Roenneberg T, Morse D (1993) Two circadian oscillators in one cell. Nature 362:362–364

    CrossRef  Google Scholar 

  • Roenneberg T, Rehman J (1996) Nitrate, a nonphotic signal for the circadian system. J Fed Am Soc Exp Biol 10:1443–1447

    CAS  Google Scholar 

  • Roenneberg T, Merrow M (1998) Molecular circadian oscillators - an alternative hypothesis. J Biol Rhythms 13:167–179

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Merrow M (2000) Circadian light input: omnes viae Romam ducunt. Curr Biol 10:R742–R745

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Merrow M (2002) Life before the clock - modeling circadian evolution. J Biol Rhythms 17:495–505

    PubMed  CrossRef  Google Scholar 

  • Roenneberg T, Merrow M (2003) The network of time: understanding the molecular circadian system. Curr Biol 13:R198–R207

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Merrow M (2007) Entrainment of the human circadian clock. Cold Spring Harb Symp Quant Biol 72:293–299

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Merrow M, Eisensamer B (1998) Cellular mechanisms of circadian systems. Zool Anal Complex Syst 100:273–286

    Google Scholar 

  • Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks - daily temporal patterns of human chronotypes. J Biol Rhythms 18:80–90

    PubMed  CrossRef  Google Scholar 

  • Roenneberg T, Kumar CJ, Merrow M (2007a) The human circadian clock entrains to sun time. Curr Biol 17:R44–R45

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Rémi J, Merrow M (2010a) Modelling a circadian surface. J Biol Rhythms 25:340–349

    PubMed  CrossRef  Google Scholar 

  • Roenneberg T, Chua EJ, Bernardo R, Mendoza E (2008) Modelling biological rhythms. Curr Biol 18:826–835

    CrossRef  Google Scholar 

  • Roenneberg T, Hut R, Daan S, Merrow M (2010b) Entrainment concepts revisited. J Biol Rhythms 25:329–339

    PubMed  CrossRef  Google Scholar 

  • Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22:939–943

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, Merrow M (2004) A marker for the end of adolescence. Curr Biol 14:R1038–R1039

    PubMed  CrossRef  CAS  Google Scholar 

  • Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (2007b) Epidemiology of the human circadian clock. Sleep Med Rev 11:429–438

    PubMed  CrossRef  Google Scholar 

  • Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H (1992) Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 75:127–134

    PubMed  CrossRef  CAS  Google Scholar 

  • Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 106:4453–4458

    PubMed  CrossRef  CAS  Google Scholar 

  • Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260

    PubMed  CrossRef  Google Scholar 

  • Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F, Albrecht U (2002) Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J Biol Rhythms 17:202–209

    PubMed  CAS  Google Scholar 

  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493

    PubMed  CrossRef  CAS  Google Scholar 

  • Strogatz SH (1987) Human sleep and circadian rhythms: a simple model based on two coupled oscillators. J Math Biol 25:327–347

    PubMed  CrossRef  CAS  Google Scholar 

  • Thain SC, Hall A, Millar AJ (2000) Functional independence of circadian clocks that regulate plant gene expression. Curr Biol 10:951–956

    PubMed  CrossRef  CAS  Google Scholar 

  • Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    PubMed  CrossRef  CAS  Google Scholar 

  • van Esseveldt KE, Lehman MN, Boer GJ (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res Brain Res Rev 33:34–77

    PubMed  CrossRef  Google Scholar 

  • Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW, Pegoraro M, Sandrelli F, Costa R, Kyriacou CP (2012) Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484:371–375

    PubMed  CrossRef  CAS  Google Scholar 

  • Wever R (1979) The circadian system of man. Springer, Berlin

    CrossRef  Google Scholar 

  • Wever RA (1989) Light effects on human circadian rhythms: a review of recent Andechs experiments. J Biol Rhythms 4:161–185

    PubMed  CrossRef  CAS  Google Scholar 

  • Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509

    PubMed  CrossRef  Google Scholar 

  • Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11:589–599

    PubMed  CrossRef  CAS  Google Scholar 

  • Wyatt JK, Ritz-de Cecco A, Czeisler CA, Dijk D-J (1999) Circadian temperature and melatonin rhythms, sleep, and neurobiological function in humans living on a 20-h day. Am J Physiol 277:R1152–1163

    PubMed  CAS  Google Scholar 

  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu Y-H (2005) Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    PubMed  CrossRef  CAS  Google Scholar 

  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R-I, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685

    PubMed  CrossRef  CAS  Google Scholar 

  • Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, Brainard GC, Gregory-Evans K, Rizzo JF 3rd, Czeisler CA, Foster RG, Moseley MJ, Lockley SW (2007) Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 17:2122–2128

    PubMed  CrossRef  CAS  Google Scholar 

  • Zavada A, Gordijn MCM, Beersma DGM, Daan S, Roenneberg T (2005) Comparison of the Munich chronotype questionnaire with the Horne-Östberg’s morningness-eveningness score. Chronobiol Int 22:267–278

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

Our work was supported by the FP6 programme EUCLOCK (TR, KVA), by the Siemens AG (TR, CV, MJ) and by the German Research Foundation (DFG; TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Roenneberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roenneberg, T., Kantermann, T., Juda, M., Vetter, C., Allebrandt, K.V. (2013). Light and the Human Circadian Clock. In: Kramer, A., Merrow, M. (eds) Circadian Clocks. Handbook of Experimental Pharmacology, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25950-0_13

Download citation