Introduction to Gauge/Gravity Duality

  • Johanna Erdmenger
Part of the Lecture Notes in Physics book series (LNP, volume 851)


The AdS/CFT correspondence and its generalizations to gauge/gravity duality are a major recent development within theoretical physics. We begin these lectures with an overview over the prerequisites necessary for understanding the correspondence. Then we move on to discussing the AdS/CFT correspondence itself, as well as giving an important test of the conjectured duality. Finally, as an example for gauge/gravity duality, we discuss the case of finite temperature and density, which is the starting point for many applications.


Gauge Theory Open String Conformal Symmetry Conformal Field Theory Mill Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Martin Ammon, to Hai Ngo and to Oliver Schlotterer for help with preparing this manuscript. Moreover I would like to thank my tutors at the school, Martin Ammon, Viviane Grass, Shu Lin, Hai Ngo and Andy O’Bannon.


  1. 1.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38 (1999) 1113][arXiv:hep-th/9711200]Google Scholar
  2. 2.
    Witten, E.: Anti-de sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150]MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998) [arXiv:hep-th/9802109]MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Freedman, D.Z., Mathur, S.D., Matusis, A., Rastelli, L.: Correlation functions in the CFT \((d)/\hbox{AdS}(d+1)\) correspondence. Nucl. Phys. B 546, 96 (1999) [arXiv:hep-th/9804058]MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H.: Oz Y., Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111]MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    D’Hoker, E., Freedman, D.Z.: Supersymmetric gauge theories and the AdS/CFT correspondence, arXiv:hep-th/0201253Google Scholar
  7. 7.
    Petersen, J.L.: Introduction to the Maldacena conjecture on AdS/CFT. Int. J. Mod. Phys. A 14, 3597 (1999) [arXiv:hep-th/9902131]ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Maldacena, J.: The gauge/gravity duality, [arXiv:1106.6073 [hep-th]]Google Scholar
  9. 9.
    Son, D.T., Starinets, A.O.: Viscosity, Black Holes, and Quantum Field Theory. Ann. Rev. Nucl. Part. Sci. 57, 95–118 (2007) [arXiv:0704.0240 [hep-th]]ADSCrossRefGoogle Scholar
  10. 10.
    Erdmenger, J., Evans, N., Kirsch, I., Threlfall, E.: Mesons in Gauge/Gravity Duals - A Review. Eur. Phys. J. A 35, 81–133 (2008) [arXiv:0711.4467 [hep-th]]ADSCrossRefGoogle Scholar
  11. 11.
    Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009) [arXiv:0903.3246 [hep-th]]MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Herzog, C.P.: Lectures on Holographic Superfluidity and Superconductivity. J. Phys. A A42, 343001 (2009) [arXiv:0904.1975 [hep-th]]CrossRefGoogle Scholar
  13. 13.
    Osborn, H., Petkou, A.C.: Implications of conformal invariance in field theories for general dimensions. Annals Phys. 231, 311–362 (1994) [hep-th/9307010]MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Erdmenger, J., Osborn, H.: Conserved Currents and the Energy Momentum Tensor in Conformally Invariant Theories for General Dimensions. Nucl. Phys. B 483, 431–474 (1997) [arXiv:hep-th/9605009]MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Coleman, S.: Aspects of Symmetry, Selected Erice Lectures. Cambridge University Press, Cambridge (1988)Google Scholar
  16. 16.
    Lee, S., Minwalla, S., Rangamani, M., Seiberg, N.: Three point functions of chiral operators in D = 4, N=4 SYM at large N. Adv. Theor. Math. Phys. 2, 697–718 (1998) [hep-th/9806074]MathSciNetzbMATHGoogle Scholar
  17. 17.
    D’Hoker, E., Freedman, D.Z., Skiba, W.: Field theory tests for correlators in the AdS / CFT correspondence. Phys. Rev. D 59, 045008 (1999) [hep-th/9807098]MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    D’Hoker, E., Freedman, D.Z., Mathur, S.D., Matusis, A., Rastelli, L.: Extremal correlators in the AdS / CFT correspondence, In: Shifman, M.A. (ed.) The many faces of the superworld, pp. 332–360 [hep-th/9908160]Google Scholar
  19. 19.
    Erdmenger, J., Pérez-Victoria, M.: Nonrenormalization of next-to-extremal correlators in N=4 SYM and the AdS / CFT correspondence. Phys. Rev. D 62, 045008 (2000) [hep-th/9912250]MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Kim, H.J., Romans, L.J., van Nieuwenhuizen, P.: The Mass Spectrum of Chiral \({\fancyscript{N}}c=2,\) \(D\,=\,10\) Supergravity on \(S^5.\) Phys. Rev. D 32, 389 (1985)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Beisert, N., Ahn, C., Alday, L.F., Bajnok, Z., Drummond, J.M., Freyhult, L., Gromov, N., Janik, R.A., et al.: Review of AdS/CFT integrability: An overview [arXiv:1012.3982 (hep-th)]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany

Personalised recommendations