Indiscernibility Relation, Rough Sets and Information System

  • Xibei Yang
  • Jingyu Yang


Pawlak’s rough set model, was firstly constructed on the basis of an indiscernibility relation. Such an indiscernibility relation is an intersection of some equivalence relations in knowledge base and then it is also an equivalence relation. This chapter introduced the basic concepts of Pawlak’s rough set, Ziarko’s variable precision rough set and Qian’s multigranulation rough sets. These models were all proposed on the basis of indiscernibility relation. Variable precision rough set generalizes classical rough approximation by introducing a threshold β. Such β value represents a bound on the conditional probability of an equivalence class, which are classified into the target concept. Multigranulation rough set uses a family of the indiscernibility relation instead of a single one to construct rough approximation. In multigranulation rough set approach, the optimistic and pessimistic multigranulation rough sets are two basic models.


Consistent Attribute Variable Precision Indiscernibility Relation Knowledge Granulation Granulation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Pawlak, Z.: Rough sets-theoretical aspects of reasoning about data. Kluwer Academic Publishers, (1991)Google Scholar
  2. [2]
    Pawlak, Z.: Rough set theory and its applications to data analysis. Cybernet. Syst. 29, 661–688 (1998)zbMATHCrossRefGoogle Scholar
  3. [3]
    Pawlak, Z.: AI and intelligent industrial applications: the rough set perspective. Cybernet. Syst. 31, 227–252 (2000)zbMATHCrossRefGoogle Scholar
  4. [4]
    Pawlak, Z.: Drawing conclusions from data-the rough set way. Int. J. Intell. Syst. 16, 3–11 (2001)zbMATHCrossRefGoogle Scholar
  5. [5]
    Pawlak, Z.: Rough sets and intelligent data analysis. Inform. Sci. 147, 1–12 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Pawlak, Z.: A rough set view on Bayes’ theorem. Int. J. Intell. Syst. 18, 487–498 (2003)zbMATHCrossRefGoogle Scholar
  7. [7]
    Pawlak, Z.: Some remarks on conflict analysis. Eur. J. Oper. Res. 166, 649–654 (2005)zbMATHCrossRefGoogle Scholar
  8. [8]
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inform. Sci. 177, 3–27 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inform. Sci. 177, 28–40 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inform. Sci. 177, 41–73 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Bhatt, R. B., Gopal, M.: On fuzzy-rough sets approach to feature selection. Pattern Recogn. Lett. 26, 965–975 (2005)CrossRefGoogle Scholar
  12. [12]
    Hu, Q. H., Liu, J. F., Yu D. R.: Mixed feature selection based on granulation and approximation. Knowl.-Based Syst. 21, 294–304 (2008)CrossRefGoogle Scholar
  13. [13]
    Kim, D.: Data classification based on tolerant rough set. Pattern Recognit. 34, 1613–1624 (2001)zbMATHCrossRefGoogle Scholar
  14. [14]
    Parthaláin, N. M., Shen Q.: Exploring the boundary region of tolerance rough sets for feature selection. Pattern Recognit. 42, 655–667 (2009)zbMATHCrossRefGoogle Scholar
  15. [15]
    Shen, Q., Jensen, R.: Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognit. 37, 1351–1363 (2004)zbMATHCrossRefGoogle Scholar
  16. [16]
    Swiniarski, R. W., Skowron, A.: Rough set method in feature selection and recognition. Pattern Recogn. Lett. 24, 833–849 (2003)zbMATHCrossRefGoogle Scholar
  17. [17]
    Wang, J. Y., Zhou, J.: Research of reduct features in the variable precision rough set model. Neurocomput. 72, 2643–2648 (2009)CrossRefGoogle Scholar
  18. [18]
    Kulak, O.: A decision support system for fuzzy multi-attribute selection of material handling equipments. Expert Syst. Appl. 29, 310–319 (2005)CrossRefGoogle Scholar
  19. [19]
    Li, G. D., Yamaguchi, D., Nagai, M.: A grey-based rough decision-making approach to supplier selection. Int. J. Adv. Manuf. Techn. 36, 1032–1040 (2008)CrossRefGoogle Scholar
  20. [20]
    Liou J. J. H.: A novel decision rules approach for customer relationship management of the airline market. Expert Syst. Appl. 36, 4374–4381 (2009)CrossRefGoogle Scholar
  21. [21]
    Shen, L. X., Loh, H. T.: Applying rough sets to market timing decisions. Decis. Support Syst. 37, 583–597 (2004)zbMATHCrossRefGoogle Scholar
  22. [22]
    Xie, G., Zhang, J., Lai, K. K., Yu, L.: Variable precision rough set for group decision-making: an application. Int. J. Approx. Reason. 49, 331–343 (2008)zbMATHCrossRefGoogle Scholar
  23. [23]
    Li, H. L., Chen, M. H.: Induction of multiple criteria optimal classification rules for biological and medical data. Comput. Biol. Med. 38, 42–52 (2008)CrossRefGoogle Scholar
  24. [24]
    Tsumoto, S.: Automated extraction of medical expert system rules from clinical databases based on rough set theory. Inform. Sci. 112, 67–84 (1998)CrossRefGoogle Scholar
  25. [25]
    Tsumoto, S.: Automated discovery of positive and negative knowledge in clinical databases. IEEE Eng. Med. Biol. 19, 56–62 (2000)CrossRefGoogle Scholar
  26. [26]
    Zhang, Z.W., Shi, Y., Gao, G. X.: A rough set-based multiple criteria linear programming approach for the medical diagnosis and prognosis. Expert Syst. Appl. 36, 8932–8937 (2009)CrossRefGoogle Scholar
  27. [27]
    Ananthanarayana, V. S., Narasimha, M. M., Subramanian, D. K.: Tree structure for efficient data mining using rough sets. Pattern Recogn. Lett. 24, 851–862 (2003)zbMATHCrossRefGoogle Scholar
  28. [28]
    Chan, C. C.: A rough set approach to attribute generalization in data mining. Inform. Sci. 107, 177–194 (1998)MathSciNetCrossRefGoogle Scholar
  29. [29]
    Chen, Y. L., Weng, C. H.: Mining fuzzy association rules from questionnaire data. Knowl.-Based Syst. 22, 46–56 (2009)CrossRefGoogle Scholar
  30. [30]
    Hulse, J. V., Khoshgoftaar, T.: Knowledge discovery from imbalanced and noisy data. Data Knowl. Eng. 68, 1513–1542 (2009)CrossRefGoogle Scholar
  31. [31]
    Li, T. R., Ruan, D., Geert, W., Song, J., Xu, Y.: A rough sets based characteristic relation approach for dynamic attribute generalization in data mining. Knowl.-Based Syst. 20, 485–494 (2007)CrossRefGoogle Scholar
  32. [32]
    Lingras, P. J., Yao, Y. Y.: Data mining using extensions of the rough set model. J. Am. Soc. Inf. Sci. Tec. 49, 415–422 (1998)CrossRefGoogle Scholar
  33. [33]
    Liu, J. F., Hu, Q. H., Yu, D. R.: A comparative study on rough set based class imbalance learning. Knowl.-Based Syst. 21, 753–763 (2008)CrossRefGoogle Scholar
  34. [34]
    Su, C. T., Chen, L. S., Yih, Y.: Knowledge acquisition through information granulation for imbalanced data. Expert Syst. Appl. 31, 531–541 (2006)CrossRefGoogle Scholar
  35. [35]
    Zhai, L. Y., Khoo, L. P., Zhong, Z.W.: A dominance-based rough set approach to Kansei Engineering in product development. Expert Syst. Appl. 36, 393–402 (2009)CrossRefGoogle Scholar
  36. [36]
    Yao, Y. Y.: Information granulation and rough set approximation. Int. J. Intell. Syst. 16, 87–104 (2001)zbMATHCrossRefGoogle Scholar
  37. [37]
    Qian, Y. H., Liang, J. Y., Dang, C. Y.: Knowledge structure, knowledge granulation and knowledge distance in a knowledge base. Int. J. Approx. Reason. 50, 174–188 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    Liang, J. Y., Qian, Y. H.: Axiomatic approach of knowledge granulation in information system. In: 19th Australian Joint Conference on Artificial Intelligence, pp. 1074–1078 (2006)Google Scholar
  39. [39]
    Liang, J. Y., Dang, C. Y., Chin, K. S., Yam Richard C. M.: A new method for measuring uncertainty and fuzziness in rough set theory. Int. J. Gen. Syst. 31, 331–342 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    Liang, J. Y., Shi, Z. Z.: The information entropy, rough entropy and knowledge granulation in rough set theory. Int. J. Uncertain. Fuzz. 12, 37–46 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    Liang, J. Y., Wang, J. H., Qian, Y. H.: A new measure of uncertainty based on knowledge granulation for rough sets. Inform. Sci. 179, 458–470 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    Beynon, M.: Reducts within the variable precision rough sets model: a further investigation. Eur. J. Oper. Res. 134, 592–605 (2001)zbMATHCrossRefGoogle Scholar
  44. [44]
    Mi, J. S., Wu, W. Z., Zhang, W. X.: Approaches to knowledge reduction based on variable precision rough set model. Inform. Sci. 159, 255–272 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    Inuiguchi, M.: Attribute reduction in variable precision rough set model. Int. J. Uncertain. Fuzz. 14, 461–479 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    Qian, Y. H., Dang, C. Y., Liang, J. Y.: MGRS in incomplete information systems. In: 2007 IEEE International Conference on Granular Computing, pp. 163–168 (2007)Google Scholar
  47. [47]
    Qian, Y. H., Liang, J. Y., Dang, C. Y.: Incomplete multigranulation rough set, IEEE T. Syst. Man Cy. B. 20, 420–431 (2010)Google Scholar
  48. [48]
    Qian, Y. H., Liang, J. Y., Wei, W. Pessimistic rough decision. In: Second International Workshop on Rough Sets Theory, pp. 440–449 (2010)Google Scholar
  49. [49]
    Qian, Y. H., Liang, J. Y., Yao, Y. Y., Dang, C. Y.: MGRS: A multi-granulation rough set. Inform. Sci. 180, 949–970 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    Khan, M. A., Banerjee, M.: Formal reasoning with rough sets in multiple-source approximation systems. Int. J. Approx. Reason. 49, 466–477 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    Kryszkiewicz, M.: Comparative study of alternative types of knowledge reduction in inconsistent systems. Int. J. Intell. Syst. 16, 105–120 (2001)zbMATHCrossRefGoogle Scholar
  52. [52]
    Zhang, W. X., Mi, J. S., Wu, W. Z.: Approaches to knowledge reductions in inconsistent systems. Int. J. Intell. Syst. 18, 989–1000 (2003)zbMATHCrossRefGoogle Scholar
  53. [53]
    Mieszkowicz-Rolka, A., Rolka, L.: Variable precision fuzzy rough sets. Transactions on Rough Sets I, LNCS 3100, 144–160 (2004)CrossRefGoogle Scholar
  54. [54]
    Mieszkowicz-Rolka, A., Rolka, L.: Fuzzy rough approximations of process data. Int. J. Approx. Reason. 49, 301–315 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    Zhao, S. Y., Tsang, E. C. C., Chen D. G.: The model of fuzzy variable precision rough sets. IEEE. T. Fuzzy Syst. 17, 451–476 (2009)CrossRefGoogle Scholar
  56. [56]
    Hu, Q. H., Yu, D. R.: Variable precision dominance based rough set model and reduction algorithm for preference-ordered data. In: Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 2279–2284 (2004)Google Scholar
  57. [57]
    Inuiguchi, M., Yoshioka, Y.: Variable-precision dominance-based rough set approach. In: The Fifth International Conference on Rough Sets and Current Trends in Computing, pp. 203–212 (2006)Google Scholar
  58. [58]
    Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set approach and attribute reduction. Int. J. Approx. Reason. 50, 1199–1214 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    Ningler, M., Stockmanns, G., Schneider, G., Kochs, H. D., Kochs E.: Adapted variable precision rough set approach for EEG analysis. Artif. Intell. Med. 47, 239–261 (2009)CrossRefGoogle Scholar
  60. [60]
    Yao, Y. Y., Zhao, Y.: Attribute reduction in decision-teoretic rough set models. Inform. Sci. 178, 3356–3373 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    Ziarko, W.: Probablistic decision tables in the variable precision rough set model. Comput. Intell. 17, 593–603 (2001)CrossRefGoogle Scholar
  62. [62]
    Ziarko, W.: Probabilistic approach to rough sets. Int. J. Approx. Reason. 49, 272–284 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    Yao, Y. Y.: Probabilistic approaches to rough sets. Expert Syst. 20, 287–297 (2003)CrossRefGoogle Scholar
  64. [64]
    Yao, Y. Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49 255–271 (2008)zbMATHCrossRefGoogle Scholar
  65. [65]
    Yao, Y. Y.: Three-way decisions with probabilistic rough sets. Inform. Sci. 180, 341–353 (2010)MathSciNetCrossRefGoogle Scholar
  66. [66]
    Yao, Y. Y.: The superiority of three-way decisions in probabilistic rough set models. Inform. Sci. 181, 1080–1096 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    Ślȩzak, D.: The rough Bayesian model for distributed decision systems. In: 4th International Conference on Rough Sets and Current Trends in Computing, pp. 384–393 (2004)Google Scholar
  68. [68]
    Ślȩzak, D., Ziarko, W.: Bayesian rough set model. In: Proceeding of the International Workshop on Foundation of Data Mining, pp. 131–135 (2002)Google Scholar
  69. [69]
    Ślȩzak, D., Ziarko, W.: Attribute reduction in the Bayesian version of variable precision rough set model. In: Proceeding of the International Workshop on Rough Sets and Knowledge Discovery, pp. 263–273 (2003)Google Scholar
  70. [70]
    Ślȩzak, D., Ziarko, W.: The investigation of the Bayesian rough set model. Int. J. Approx. Reason. 40, 81–91 (2005)CrossRefGoogle Scholar

Copyright information

© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xibei Yang
    • 1
  • Jingyu Yang
    • 2
  1. 1.School of Computer Science and EngineeringJiangsu University of Science and TechnologyZhenjiang JiangsuP.R. China
  2. 2.School of Computer Science and TechnologyNanjing University of Science and TechnologyNanjing JiangsuP.R. China

Personalised recommendations