Games and Markov Decision Processes with Mean-Payoff Parity and Energy Parity Objectives

  • Krishnendu Chatterjee
  • Laurent Doyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7119)


In this paper we survey results of two-player games on graphs and Markov decision processes with parity, mean-payoff and energy objectives, and the combination of mean-payoff and energy objectives with parity objectives. These problems have applications in verification and synthesis of reactive systems in resource-constrained environments.


Markov Decision Process Priority Function Random Attractor Parity Objective Hierarchical Cluster Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis Through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted Timed Automata With Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Brázdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-counter Markov decision processes. In: Proc. of SODA, pp. 863–874. SIAM (2010)Google Scholar
  4. 4.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L.: Energy and Mean-Payoff Parity Markov Decision Processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 206–218. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision processes. Technical report, IST Austria (February 2011),
  8. 8.
    Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic verification. In: Proc. of SODA. ACM SIAM (2011)Google Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In: Proc. of LICS, pp. 178–187. IEEE Computer Society (2005)Google Scholar
  10. 10.
    Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Quantitative stochastic parity games. In: Proc. of SODA Symposium on Discrete Algorithms, pp. 114–123 (2004); Technical Report: UCB/CSD-3-1280 (October 2003)Google Scholar
  11. 11.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)Google Scholar
  13. 13.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. Journal of Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS, pp. 328–337. IEEE Computer Society Press (1988)Google Scholar
  15. 15.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  16. 16.
    Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathematics 23(3), 309–311 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    King, V., Kupferman, O., Vardi, M.Y.: On the Complexity of Parity Word Automata. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Liggett, T.A., Lippman, S.A.: Stochastic games with perfect information and time average payoff. Siam Review 11, 604–607 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Puterman, M.L.: Markov Decision Processes. John Wiley and Sons (1994)Google Scholar
  20. 20.
    Tarjan, R.E.: A hierarchical clustering algorithm using strong components. Inf. Process. Lett. 14(1), 26–29 (1982)CrossRefGoogle Scholar
  21. 21.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages. Beyond Words, vol. 3, ch. 7, pp. 389–455. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In: FOCS 1985. IEEE Computer Society Press (1985)Google Scholar
  23. 23.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Laurent Doyen
    • 2
  1. 1.IST Austria (Institute of Science and Technology)Austria
  2. 2.LSV, ENS Cachan & CNRSFrance

Personalised recommendations