Advertisement

Generalized Maneuvers in Route Planning

  • Petr Hliněný
  • Ondrej Moriš
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7119)

Abstract

We study an important practical aspect of the route planning problem in real-world road networks – maneuvers. Informally, maneuvers represent various irregularities of the road network graph such as turn-prohibitions, traffic light delays, round-abouts, forbidden passages and so on. We propose a generalized model which can handle arbitrarily complex (and even negative) maneuvers, and outline how to enhance Dijkstra’s algorithm in order to solve route planning queries in this model without prior adjustments of the underlying road network graph.

Keywords

Road Network Distance Estimate Route Planning Transportation Research Part Query Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anez, J., De La Barra, T., Perez, B.: Dual graph representation of transport networks. Transportation Research Part B: Methodological 30(3), 209–216 (1996)CrossRefGoogle Scholar
  2. 2.
    Cherkassky, B., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming 73(2), 129–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gutierrez, E., Medaglia, A.: Labeling algorithm for the shortest path problem withturn prohibitions with application to large-scale road networks. Annals of Operations Research 157, 169–182 (2008), doi:10.1007/s10479-007-0198-9MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to “A formal basis for the heuristic determination of minimum cost paths”. SIGART Bull. 1(37), 28–29 (1972)CrossRefGoogle Scholar
  7. 7.
    Hliněný, P., Moriš, O.: Scope-Based Route Planning. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 445–456. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Jiang, J., Han, G., Chen, J.: Modeling turning restrictions in traffic network for vehicle navigation system. In: Proceedings of the Symposium on Geospatial Theory, Processing, and Applications (2002)Google Scholar
  9. 9.
    Kirby, R.F., Potts, R.B.: The minimum route problem for networks with turn penalties and prohibitions. Transportation Research 3, 397–408 (1969)CrossRefGoogle Scholar
  10. 10.
    Pallottino, S., Scutella, M.G.: Shortest path algorithms in transportation models: classical and innovative aspects. Technical report, Univ. of Pisa (1997)Google Scholar
  11. 11.
    Pohl, I.S.: Bi-directional and heuristic search in path problems. PhD thesis, Stanford University, Stanford, CA, USA (1969)Google Scholar
  12. 12.
    Schultes, D.: Route Planning in Road Networks. PhD thesis, Karlsruhe University, Karlsruhe, Germany (2008)Google Scholar
  13. 13.
    Villeneuve, D., Desaulniers, G.: The shortest path problem with forbidden paths. European Journal of Operational Research 165(1), 97–107 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Winter, S.: Modeling costs of turns in route planning. GeoInformatica 6, 345–361 (2002), doi:10.1023/A:1020853410145CrossRefzbMATHGoogle Scholar
  15. 15.
    Ziliaskopoulos, A.K., Mahmassani, H.S.: A note on least time path computation considering delays and prohibitions for intersection movements. Transportation Research Part B: Methodological 30(5), 359–367 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr Hliněný
    • 1
  • Ondrej Moriš
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations