Advertisement

Software Agents in Clinical Workflow, Clinical Guidelines and Clinical Trial Medicine

  • Alexis Andrew Miller
  • Fiona Hegi-Johnson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7057)

Abstract

Software agents can be used to assist with or even automate many parts of a business process or workflow. In this paper we describe what needs to be done to use software agents to assist the oncology trial workflow.

The most pressing problem is simply getting the existing data in a machine readable format. To this end we propose the Clinical Knowledge Markup Language for representing all this information.

Agents can then be used for a multitude of tasks such as identifying patients that are eligible for a given trial, suggesting treatment based on past trials and automating data collection.

Keywords

Business Process Clinical Guideline Trial Protocol Software Agent Business Process Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bezwoda, W., Seymour, L., Dansey, R.: High-dose chemotherapy with hematopoietic rescue as primary treatment for metastatic breast cancer: a randomized trial. Journal of Clinical Oncology 13, 2483 (1995)CrossRefGoogle Scholar
  2. 2.
    NCI Issues Information on Falsified Data in NSABP Trials. JNCI Journal of the National Cancer Institute 86, 487–489 (1994)Google Scholar
  3. 3.
    Goldman, D.P., Berry, S.H., McCabe, M.S., Kilgore, M.L., Potosky, A.L., Schoenbaum, M.L., Schonlau, M., Weeks, J.C., Kaplan, R., Escarce, J.J.: Incremental treatment costs in national cancer institute-sponsored clinical trials. JAMA: The Journal of the American Medical Association 289, 2970–2977 (2003)CrossRefGoogle Scholar
  4. 4.
    CDISC (2010), http://www.cdisc.org/
  5. 5.
    Scott, J., Hinder, V.: Quality or Quantity? Data Collection in Clinical Trials. Cancer Trials New Zealand, University of AucklandGoogle Scholar
  6. 6.
    Lara, P.N., Higdon, R., Lim, N., Kwan, K., Tanaka, M., Lau, D.H., Wun, T., Welborn, J., Meyers, F.J., Christensen, S., O’Donnell, R., Richman, C., Scudder, S.A., Tuscano, J., Gandara, D.R., Lam, K.S.: Prospective evaluation of cancer clinical trial accrual patterns: identifying potential barriers to enrollment. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 19, 1728–1733 (2001)CrossRefGoogle Scholar
  7. 7.
    Miller, A.A.: New informatics-based work flow paradigms in radiation oncology: the potential impact on epidemiological cancer research. Health Information Management Journal 34, 84–87 (2006)CrossRefGoogle Scholar
  8. 8.
    Peters, L.J., O’Sullivan, B., Giralt, J., Fitzgerald, T.J., Trotti, A., Bernier, J., Bourhis, J., Yuen, K., Fisher, R., Rischin, D.: Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. Journal of Clinical Oncology 28, 2996–3001 (2010)CrossRefGoogle Scholar
  9. 9.
    Miller, A.A.: New informatics-based work flow paradigms in radiation oncology: the potential impact on epidemiological cancer research. Health Information Management Journal 34, 84–87 (2006)CrossRefGoogle Scholar
  10. 10.
    Miller, A.A., Phillips, A.K.: A contemporary case study illustrating the integration of health information technologies into the organisation and clinical practice of radiation oncology. Health Information Management Journal 34, 136–145 (2006)CrossRefGoogle Scholar
  11. 11.
    Yu, P., Gandhidasan, S., Miller, A.A.: Different usage of the same oncology information system in two hospitals in Sydney–lessons go beyond the initial introduction. International Journal of Medical Informatics 79, 422–429 (2010)CrossRefGoogle Scholar
  12. 12.
    Roach III, M., Lawton, C.A., Donnelly, B., Grignon, D.: RTOG 94-13: A Phase III Trial Comparing Definitive Whole Pelvic Irradiation Followed by a Conedown Boost to Boost Irradiation Only and Comparing Neoadjuvant to Adjuvant Total Androgen Suppression (TAS), Fairmont, VA (1994)Google Scholar
  13. 13.
    Roach, M., DeSilvio, M., Lawton, C., Uhl, V., Machtay, M., Seider, M.J., Rotman, M., Jones, C., Asbell, S.O., Valicenti, R.K., Han, S., Thomas, C.R., Shipley, W.S.: Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 21, 1904–1911 (2003)CrossRefGoogle Scholar
  14. 14.
    National Comprehensive Cancer Network, NCCN Clinical Practice Guidelines in Oncology (NCCN GuidelinesTM) - Prostate Cancer (2010)Google Scholar
  15. 15.
    Zelefsky, M.J., Moughan, J., Owen, J., Zietman, A.L., Roach, M., Hanks, G.E.: Changing trends in national practice for external beam radiotherapy for clinically localized prostate cancer: 1999 Patterns of Care survey for prostate cancer. International Journal of Radiation Oncology, Biology, Physics 59, 1053–1061 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexis Andrew Miller
    • 1
    • 2
  • Fiona Hegi-Johnson
    • 3
  1. 1.Illawarra Cancer Care CentreWollongong HospitalWollongongAustralia
  2. 2.Centre for Oncology InformaticsIllawarra Health & Medical Research Institute, University of WollongongGwynnevilleAustralia
  3. 3.Department of Radiation OncologyRoyal North Shore HospitalSt LeonardsAustralia

Personalised recommendations