One Multi-ocular Image Mutual Segmentation Method

  • Li Xin
  • Zhu Jingfu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 132)

Abstract

A segmentation method of parallel multi-ocular image is introduced. The camera is rectangle arranged four channel multi-spectral camera, the four channels is R, G, B and NIR respectively. The corn canopy images are captured in field by the camera. The main corn leaves in NIR are segmented based on CV model. One matching method of the multi-ocular image is applied to all images of one group, the main corn leaves in R, G and B images can be matched with the corn leaves in NIR image based on matching transforms. So the main corn leaves in R, G and B images are segmented.

Keywords

Image Segmentation Multi-Ocular Image Matching Transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 12, 1167–1186 (1991)CrossRefGoogle Scholar
  2. 2.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Processing 11, 1549–1560 (1995)CrossRefGoogle Scholar
  3. 3.
    Kim, S.C., Kang, T.J.: Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition 40(4), 1207–1221 (2007)MATHCrossRefGoogle Scholar
  4. 4.
    Acharyya, M., Kundu, M.K.: An adaptive approach to unsupervised texture segmentation using M-Band wavelet transform. Signal Processing 81(7), 1337–1356 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–684 (1989)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Vese: Active Contours Without Edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Yang, B., Pei, Z.: Definition of Crop Condition and Crop Monitoring Using Remote Sensing. Transactions of the Chinese Society of Agricultural Engineering 15(3), 214–218 (1999)Google Scholar
  8. 8.
    Wu, S., Mao, R., Li, H., et al.: Review of Corn Condition Monitoring Using Remote Sensing in China. Chinese Agricultural Science Bulletin 21(3), 319–322 (2005)Google Scholar
  9. 9.
    Zheng, B., Duan, J., Tian, B.: On-line Calibration Technique of Vision Sensor in Moving Vehicles. Modern Electronics Technique 31(22), 187–191 (2008)Google Scholar
  10. 10.
    Liu, T., Yu, Z., Ma, Q.: Target Distance Computing Based on Parallel Binocular Stereo Vision. Journal of QingDao University (Natural Science Edition) 22(1), 59–62 (2009)Google Scholar
  11. 11.
    Zhu, J., Li, M., Zhang, Y., et al.: Matching method of parallel multi-cular image for corn canopy. Transactions of Chinese Society of Agricultural Engineering 26(11), 189–193 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Li Xin
    • 1
  • Zhu Jingfu
    • 2
  1. 1.College of Art and ScienceHeiLongJiang BaYi Agricultural UniversityDaQingChina
  2. 2.College of Information TechnologyHeiLongJiang BaYi Agricultural UniversityDaQingChina

Personalised recommendations