Steady 2-D and 3-D Supersonic Flow

  • Wai-How Hui
  • Kun Xu


As shown in Section 7.6, in the case of steady flow, for two of the unified coordinates (λ, ξ, η) to be material coordinates, the mesh velocity must be parallel to the fluid velocity, i.e., (U, V, W) = h(u, v, w).


Computational Fluid Dynamics Mach Number Supersonic Flow Godunov Scheme Mach Number Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] W.H. HUI AND D.L. CHU. Optimum grid for the steady Euler equations. Computational Fluid Dynamics Journal, 4: 403–426, 1996.Google Scholar
  2. [2] W.H. HUI AND C.Y. Loh. A new Lagrangian method for steady supersonic flow computation, Part III: Strong shocks. J. Comput. Phys., 103: 465–471, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    C.Y. LEPAGE AND W.H. HUI. A shock-adaptive Godunov scheme based on the generalized Lagrangian formulation. J. Comput. Phys., 122: 291–299, 1995.zbMATHCrossRefGoogle Scholar
  4. [4]
    W.H. HUI AND Y. HE. Hyperbolicity and optimal coordinates of the threedimensional steady Euler equations. SIAM Journal on Applied Mathematics, 57: 893–928, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    H.M. GLAZ AND A.B. WARDLAW. A high-order Godunov scheme for steady supersonic gas dynamics. J. Comput. Phys., 58: 157–187, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    W.H. HUI AND J.J. HU. Space-marching gridless computation of steady supersonic/ hypersonic flow. Int. J. Comput. Fluid Dyn., 20: 55–59, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    J.W. MACCOLL. The conical shock wave formed by a cone moving at high speed. Proc. R. Soc. Ser. A, 159: 459–472, 1937.CrossRefGoogle Scholar
  8. [8]
    C. ROGERS, W.K. SCHIEF AND W.H. HUI. On complex-lamellar motion of a Prim gas. J. Math Anal. Appl., 266: 55–69, 2002.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C.Y. LOH AND M.S. LIOU. A new Lagrangian method for three-dimensional steady supersonic flows. J. Comput. Phys., 113: 224–248, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    J.E. WEST AND R.H. KORKEGI. Supersonic interaction in the corner of intersecting wedges at high Reynolds numbers. AIAA J., 10: 652, 1972.CrossRefGoogle Scholar
  11. [11]
    C.Y. LOH AND W.H. HUI. A new Lagrangian random choice method for solving the steady Euler equations. Computational Fluid Dynamics Journal, 2: 247–268, 1993.Google Scholar
  12. [12]
    C.Y. LOH, M. S. LIOU AND W.H. HUI. An investigation of random choice method for 3-D steady supersonic flow. International Journal for Numerical Methods in Fluids, 29: 97–119, 1999.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wai-How Hui
    • 1
  • Kun Xu
    • 1
  1. 1.Mathematics DepartmentHong Kong University of Science and TechnologyChina

Personalised recommendations