Advertisement

Review of Eulerian Computation for 1-D Inviscid Flow

  • Wai-How Hui
  • Kun Xu

Abstract

Let σ be a stationary surface of discontinuity and n be a unit normal of σ (Figure 3.1). We take a rectangular volume Ω for which σ cuts across Ω as shown in the figure. Let S + denote the surface of Ω which lies in the positive side of σ, S that lies in the negative side, and S l denote the lateral surfaces of Ω.

Keywords

Shock Wave Rarefaction Wave Riemann Problem Inviscid Flow Shock Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.D. LAX AND B. WENDROFF. Systems of conservation laws. Comm. Pure and Applied Mathematics, 13: 217–237, 1960.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    T.Y. HOU AND P.G. LEFLOCH. Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput., 62: 497–530, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. SMOLLER. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994.zbMATHCrossRefGoogle Scholar
  4. [4]
    E.F. TORO. Riemann Solvers and Numerical Methods for Fluid Dynamics. New York: Springer-Verlag, 1999.zbMATHGoogle Scholar
  5. [5]
    J. GLIMM. Solution in the large for nonlinear hyperbolic systems of equations. Comm. Pure. Appl. Math., 18: 697–715, 1965.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. J. CHORIN. Random choice solutions of hyperbolic systems. J. Comput. Phys., 22: 517–533, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S.K. GODUNOV. A difference scheme for numerical computation of discontinuous Solutions of Hydrodynamic Equations. Math. Sbornik, 47: 271, 1959.MathSciNetGoogle Scholar
  8. [8]
    W.H. HUI AND C.Y. LOH. A new Lagrangian method for steady supersonic flow computation, Part III: strong shocks. J. Comput. Phys., 103: 465–471, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C.Y. LEPAGE AND W.H. HUI. A shock-adaptive Godunov scheme based on the generalized Lagrangian formulation. J. Comput. Phys., 122: 291–299, 1995.zbMATHCrossRefGoogle Scholar
  10. [10]
    K. X U AND J.S. HU. Projection dynamics in Godunov-type schemes J. Comput. Phys., 142: 412–427, 1998.MathSciNetCrossRefGoogle Scholar
  11. [11]
    K. XU AND Z.W. LI. Dissipative mechanism in Godunov-type schemes. Int. J. Numer. Methods in Fluids, 37: 1–22, 2001.zbMATHCrossRefGoogle Scholar
  12. [12]
    M. BEN-ARTZI AND J. FALCOVITZ. Generalized Riemann problems in computational fluid dynamics. Cambridge: Cambridge University Press, 2003.zbMATHCrossRefGoogle Scholar
  13. [13]
    B. VAN LEER. Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. J. Comput. Phys., 23: 276–299, 1977.zbMATHCrossRefGoogle Scholar
  14. [14]
    P. COLELLA AND P. WOODWARD. The piecewise-parabolic method (PPM) for gasdynamical simulations. J. Comput. Phys., 54: 174–201, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    A. HARTEN, B. ENGQUIST, S. OSHER AND S. R. CHAKRAVARTHY. Uniformly high order accuracy essentially non-oscillatory schemes III. J. Comput. Phys., 71: 231–303, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    X.D. LIU, S. OSHER AND T. CHAN. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115: 200–212, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    G.S. JIANG AND C.W. SHU. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126: 202–228, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    K. XU. Dissipative mechanism in Godunov method. Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi, and J. Periaux (Eds), 309–321, 2001.Google Scholar
  19. [19]
    K. XU, M.L. MAO AND L. TANG. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys., 203: 405–421, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    J. QUIRK. A contribution to the great Riemann solver debate. Int. J. Num. Met. Fluids, 18: 555–574, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    R.J. LEVEQUE. Nonlinear conservation laws and finite volume methods for astrophysical fluid flow. Computational Methods for Astrophysical Flow, Edited by O. Steiner and A. Gautschy, New York: Springer-Verlag, 1998.Google Scholar
  22. [22]
    H.Z. TANG AND T.G. LIU. A note on the conservative schemes for the Euler equations. J. Comput. Phys., 218: 451–459, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    S. KUDRIAKOV AND W.H. HUI. On a new defect of shock-capturing methods. J. Comput. Phy., 227: 2105–2117, 2008.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wai-How Hui
    • 1
  • Kun Xu
    • 1
  1. 1.Mathematics DepartmentHong Kong University of Science and TechnologyChina

Personalised recommendations