Skip to main content
  • 1563 Accesses

Abstract

Let σ be a stationary surface of discontinuity and n be a unit normal of σ (Figure 3.1). We take a rectangular volume Ω for which σ cuts across Ω as shown in the figure. Let S + denote the surface of Ω which lies in the positive side of σ, S that lies in the negative side, and S l denote the lateral surfaces of Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.D. LAX AND B. WENDROFF. Systems of conservation laws. Comm. Pure and Applied Mathematics, 13: 217–237, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  2. T.Y. HOU AND P.G. LEFLOCH. Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput., 62: 497–530, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. SMOLLER. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994.

    Book  MATH  Google Scholar 

  4. E.F. TORO. Riemann Solvers and Numerical Methods for Fluid Dynamics. New York: Springer-Verlag, 1999.

    MATH  Google Scholar 

  5. J. GLIMM. Solution in the large for nonlinear hyperbolic systems of equations. Comm. Pure. Appl. Math., 18: 697–715, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. J. CHORIN. Random choice solutions of hyperbolic systems. J. Comput. Phys., 22: 517–533, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  7. S.K. GODUNOV. A difference scheme for numerical computation of discontinuous Solutions of Hydrodynamic Equations. Math. Sbornik, 47: 271, 1959.

    MathSciNet  Google Scholar 

  8. W.H. HUI AND C.Y. LOH. A new Lagrangian method for steady supersonic flow computation, Part III: strong shocks. J. Comput. Phys., 103: 465–471, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.Y. LEPAGE AND W.H. HUI. A shock-adaptive Godunov scheme based on the generalized Lagrangian formulation. J. Comput. Phys., 122: 291–299, 1995.

    Article  MATH  Google Scholar 

  10. K. X U AND J.S. HU. Projection dynamics in Godunov-type schemes J. Comput. Phys., 142: 412–427, 1998.

    Article  MathSciNet  Google Scholar 

  11. K. XU AND Z.W. LI. Dissipative mechanism in Godunov-type schemes. Int. J. Numer. Methods in Fluids, 37: 1–22, 2001.

    Article  MATH  Google Scholar 

  12. M. BEN-ARTZI AND J. FALCOVITZ. Generalized Riemann problems in computational fluid dynamics. Cambridge: Cambridge University Press, 2003.

    Book  MATH  Google Scholar 

  13. B. VAN LEER. Towards the ultimate conservative difference scheme IV, a new approach to numerical convection. J. Comput. Phys., 23: 276–299, 1977.

    Article  MATH  Google Scholar 

  14. P. COLELLA AND P. WOODWARD. The piecewise-parabolic method (PPM) for gasdynamical simulations. J. Comput. Phys., 54: 174–201, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. HARTEN, B. ENGQUIST, S. OSHER AND S. R. CHAKRAVARTHY. Uniformly high order accuracy essentially non-oscillatory schemes III. J. Comput. Phys., 71: 231–303, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  16. X.D. LIU, S. OSHER AND T. CHAN. Weighted essentially non-oscillatory schemes. J. Comput. Phys., 115: 200–212, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.S. JIANG AND C.W. SHU. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126: 202–228, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. XU. Dissipative mechanism in Godunov method. Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi, and J. Periaux (Eds), 309–321, 2001.

    Google Scholar 

  19. K. XU, M.L. MAO AND L. TANG. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. J. Comput. Phys., 203: 405–421, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. QUIRK. A contribution to the great Riemann solver debate. Int. J. Num. Met. Fluids, 18: 555–574, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.J. LEVEQUE. Nonlinear conservation laws and finite volume methods for astrophysical fluid flow. Computational Methods for Astrophysical Flow, Edited by O. Steiner and A. Gautschy, New York: Springer-Verlag, 1998.

    Google Scholar 

  22. H.Z. TANG AND T.G. LIU. A note on the conservative schemes for the Euler equations. J. Comput. Phys., 218: 451–459, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. KUDRIAKOV AND W.H. HUI. On a new defect of shock-capturing methods. J. Comput. Phy., 227: 2105–2117, 2008.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hui, WH., Xu, K. (2012). Review of Eulerian Computation for 1-D Inviscid Flow. In: Computational Fluid Dynamics Based on the Unified Coordinates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25896-1_3

Download citation

Publish with us

Policies and ethics