Advertisement

Dating the Teide Volcanic Complex: Radiometric and Palaeomagnetic Methods

  • Hervé Guillou
  • Catherine Kissel
  • Carlo Laj
  • Juan Carlos Carracedo
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

This chapter describes the integration of radiometric dating and palaeomagnetic investigations to decipher the spatial and temporal evolution of volcanic edifices of Tenerife Island. Accurate ages are crucial to reconstruct the recent eruptive history of Tenerife (specifically Teide Volcano and the North West and North East Rift Zones). Samples have been dated using both the K–Ar and the 40Ar/39Ar method in order to assess the reliability of the ages obtained. When the two methods yielded similar results and precision, accurate pooled ages were calculated. The correlation of these ages with the geomagnetic polarity of the lavas (referred to as the geomagnetic and astronomical polarity time scales) has recently been successfully applied to establish the magnetic stratigraphy of volcanoes in the Canary Islands and to constrain the main geological units. Moreover, this well-constrained and high resolution geochronological framework is of prime interest to track and study geomagnetic reversals and excursions. As an example, results are presented from three lava flows in Tenerife from the Mono Lake geomagnetic excursion, the youngest in the documented geological record.

Keywords

Lava Flow Mono Lake Geomagnetic Reversal Auckland Volcanic Field Geomagnetic Excursion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Monem A, Watkins ND, Gast PW (1971) Potassium-argon ages, volcanic stratigraphy and geomagnetic polarity history of the Canary Islands: Lanzarote, Fuerteventura, Gran Canaria, and La Gomera. Am J Sci 271:490–521CrossRefGoogle Scholar
  2. Abdel-Monem A, Watkins ND, Gast PW (1972) Potassium -argon ages, volcanic stratigraphy and geomagnetic polarity history of the Canary Islands: Tenerife, La Palma and Hierro. Am J Sci 272:805–825CrossRefGoogle Scholar
  3. Ablay GJ, Ernst GGJ, Marti J, Sparks RSJ (1995) The 2 ka subplinian eruption of Mña. Blanca, Tenerife. Bull Volcanol 57:337–355Google Scholar
  4. Andersen KK, Svensson A, Johnsen SJ, Rasmussen SU, Bigler M, Röthlisberger R, Ruth U, Siggaard-Andersen ML, Steffensen JP, Dahl-Jensen D, Vinther BM, Clausen HB (2006) The greenland ice core chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quatern Sci Rev 25:3246–3257CrossRefGoogle Scholar
  5. Araña V, Felpeto A, Astiz M, García A, Ortiz R, Abella R (2000) Zonation of the main volcanic hazards (lava flows and ash falls) in Tenerife, CI. A proposal for a surveillance network. J Volcanol Geotherm Res 103:377–391CrossRefGoogle Scholar
  6. Boulesteix T, Hildenbrand A, Soler V, Gillot P-Y (2012) Eruptive response of oceanic islands to giant landslides: new insights from the geomorphologic evolution of the Teide-Pico Viejo volcanic complex (Tenerife, Canary). Geomorphol 138:61–73CrossRefGoogle Scholar
  7. Bruns M, Ingeborg L, Münnich KO, Hubberten HW, Fillipakis S (1980) Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 2:532–536Google Scholar
  8. Carracedo JC (1975) Estudio paleomagnético de la isla de Tenerife. Ph. D. Thesis, Universidad Complutense, MadridGoogle Scholar
  9. Carracedo JC (1979) Paleomagnetismo e historia volcánica de Tenerife. Aula Cultura Cabildo Insular de Tenerife, Santa Cruz de Tenerife, p 81Google Scholar
  10. Carracedo JC, Rodríguez Badiola E, Guillou H, De La Nuez J, Pérez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro (Canary Islands). Estud Geol 57:175–273CrossRefGoogle Scholar
  11. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051CrossRefGoogle Scholar
  12. Carracedo JC, Guillou H, Nomade S, Rodríguez-Badiola E, Pérez-Torrado FJ, Rodríguez-González A, Paris R, Troll VR, Wiesmaier S, Delcamp A, Fernández-Turiel JL (2011) Evolution of ocean island rifts: the Northeast rift zone of Tenerife, Canary Islands. Geol Soc Am Bull 123:562–584CrossRefGoogle Scholar
  13. Cassata WS, Singer BS, Cassidy J (2008) Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand. Earth Planet Sci Lett 268:76–88CrossRefGoogle Scholar
  14. Cassata WS, Singer BS, Liddicoat JC, Coe RS (2010) Reconciling discrepant chronologies for the geomagnetic excursion in the Mono Basin, California: insights from new 40Ar/39Ar dating experiments and a revised relative paleointensity correlation. Quatern Geochronology 5:533–543CrossRefGoogle Scholar
  15. Charbit S, Guillou H, Turpin L (1998) Cross calibration of K-Ar standard minerals using an unspiked Ar measurement technique. Chem Geol 150:147–159Google Scholar
  16. Denham CR (1974) Counter-clockwise motion of palaeomagnetic directions 24,000 years ago at Mono Lake, California. J Geomag Geoelec 26:487–498Google Scholar
  17. Denham CR, Cox A (1971) Evidence that the Laschamp polarity event did not occur 13,300–34,000 years ago. Earth Planet Sci Lett 13:181–190CrossRefGoogle Scholar
  18. Grootes PM, Stuiver M, White JWC, Johnsen S, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nat 366:552–554CrossRefGoogle Scholar
  19. Guillou H, Carracedo JC, Pérez Torrado F, Rodríguez Badiola E (1996) K-Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 73:141–155CrossRefGoogle Scholar
  20. Guillou H, Carracedo JC, Day SJ (1998) Dating of the upper Pleistocene–Holocene volcanic activity of La Palma using the unspiked K-Ar technique. J Volcanol Geotherm Res 86:137–149CrossRefGoogle Scholar
  21. Guillou H, Carracedo JC, Duncan R (2001) K-Ar, 40Ar/39Ar Ages and magnetostratigraphy of Brunhes and Matuyama lava sequences from La Palma Island. J Volcanol Geotherm Res 106:175–194CrossRefGoogle Scholar
  22. Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ (2004a) K/Ar ages and magnetic stratigraphy of the Miocene-Pliocene shield volcanoes of Tenerife, Canary Islands: Implications for the early evolution of Tenerife and the Canarian hotspot age progression. Earth Planet Sci Lett 222:599–614CrossRefGoogle Scholar
  23. Guillou H, Pérez Torrado FJ, Hansen Machin AR, Carracedo JC, Gimeno D (2004b) The Plio-Quaternary volcanic evolution of Gran Canaria based on new K-Ar ages and magnetostratigraphy. J Volcanol Geotherm Res 135:221–246CrossRefGoogle Scholar
  24. Guillou H, Nomade S, Carracedo JC, Kissel C, Laj C, Wandres C (2011) Effectiveness of combined unspiked K-Ar and 40Ar/39Ar dating methods in the 14C age range. Quat Geochronol 6:530–538CrossRefGoogle Scholar
  25. Kissel C, Laj C, Piotrowski AM, Goldstein SL, Hemming SR (2008) Millenialscale propagation of Atlantic deep waters to the glacial southern ocean. Paleoceanogr 23:PA2102Google Scholar
  26. Kissel C, Guillou H, Laj C, Carracedo JC, Nomade S, Perez-Torrado F, Wandres C (2011) The Mono Lake excursion recorded in phonolitic lavas from Tenerife (Canary Islands): palaeomagnetic analyses and coupled K/Ar and Ar/Ar dating. Phys Earth Planet Inter 187:232–244CrossRefGoogle Scholar
  27. Laj C, Channell JET (2007) Geomagnetic excursions. In: Kono M (ed), Treatise in geophysics. Geomagnetism, Encyclopedia of Geophysics, pp 373–416Google Scholar
  28. Laj C, Kissel C, Mazaud A, Channell JET, Beer J (2000) North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Philos. Trans. R. Soc. London, Ser A 358:1009–1025Google Scholar
  29. Laj C, Kissel C, Beer J (2004) High Resolution Global Paleointensity Stack since 75 kyrs (GLOPIS-75) calibrated to absolute values. AGU Monograph, ‘‘Timescales of the Geomagnetic Field’’ 145:255–265Google Scholar
  30. Liddicoat JC, Coe RS (1979) Mono Lake geomagnetic excursion. J Geophys Res 84:261–271Google Scholar
  31. McDougall I (1963) Potassium–argon ages from western Oahu, Hawaii. Nat 197:344–345CrossRefGoogle Scholar
  32. McDougall I (1964) Potassium-argon ages from lavas of the Hawaiian Islands. Geol Soc Am Bull 75:107–128CrossRefGoogle Scholar
  33. Muscheler R, Beer J, Wagner G, Laj C, Kissel C, Raisbeck GM, Yiou F, Kubik PW (2004) Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet Sci Lett 219:325–340CrossRefGoogle Scholar
  34. North Greenland Ice Core Project Members (2004) High resolution climate record of the northern hemisphere reaching into the last interglacial period. Nat 431:147–151Google Scholar
  35. Pasquier-Cardin A, Allard P, Ferreira T, Hatte C, Coutinho R, Fontugne M, Jaudon M (1999) Magma-derived CO2 emissions recorded in 14C and 13C contents of plants growing in Furnas caldera, Azores. J Volcanol Geotherm Res 92:195–207CrossRefGoogle Scholar
  36. Pellicer MJ (1977) Estudio volcanológico de la isla de El Hierro (Islas Canarias). Estud Geol 33:181–197Google Scholar
  37. Pérez Torrado FJ, Rodríguez González A, Carracedo JC, Fernández Turiel JL, Guillou H, Hansen A, Rodríguez Badiola E (2011) Edades C-14 Del Rift ONO de El Hierro (Islas Canarias). In: XIII Reunión Nacional del Cuaternario, Andorra la Vella, pp 101–104Google Scholar
  38. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PGB, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RLE, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2009) Intcal09 and Marine 09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  39. Rodriguez-Gonzalez A, Fernandez-Turiel JL, Perez-Torrado FJ, Hansen A, Aulinas M, Carracedo JC, Gimeno D, Guillou H, Paris R, Paterne M (2009) The Holocene volcanic history of Gran Canaria island: implications for volcanic hazards. J Quatern Sci 24:697–709CrossRefGoogle Scholar
  40. Rubin M, Gargulinski LK, McGeehin JP (1987) Hawaiian radiocarbon dates. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii: Papers to commemorate the 75th anniversary of the founding of the Hawaiian Volcano Observatory vol 1. US Geol Survy Prof Pap, vol 1350, pp 213–242Google Scholar
  41. Saupé F, Strappa O, Coppens R, Guillet B, Jaegy R (1980) A possible source of error in 14C dates: volcanic emanations (examples from the Monte Amaita district, provinces of Grosseto and Sienna, Italy). Radiocarbon 22:525–531Google Scholar
  42. Singer BS, Relle MK, Hoffman KA, Battle A, Laj C, Guillou H, Carracedo JC (2002) Ar/Ar ages from transitionally magnetized lavas on La Palma, Canary Islands, and the geomagnetic instability timescale. J Geophys Res 107:2307CrossRefGoogle Scholar
  43. Singer BS, Brown LL, Rabassa JO, Guillou H (2004) 40Ar/39Ar chronology of late Pliocene and early Pleistocene geomagnetic and glacial events in southern Argentina. In: Channell JET et al (eds) AGU geophysical monograph series 145: timescales of the palaeomagnetic field. AGU, Washington, pp 175–190CrossRefGoogle Scholar
  44. Thellier E, Thellier O (1959) Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann Geophys 15:285–376Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hervé Guillou
    • 1
  • Catherine Kissel
    • 1
  • Carlo Laj
    • 1
  • Juan Carlos Carracedo
    • 2
  1. 1.Laboratoire des Sciences du Climat et de L’Environnement/IPSL (CEA-CNRS-UVSQ)Gif sur YvetteFrance
  2. 2.Departamento de Física (GEOVOL)Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations