Teide Volcano pp 173-190 | Cite as

Magmatic Differentiation in the Teide–Pico Viejo Succession: Isotope Analysis as a Key to Deciphering the Origin of Phonolite Magma

  • Sebastian Wiesmaier
  • Valentin R. Troll
  • Juan Carlos Carracedo
  • Robert M. Ellam
  • Ilya Bindeman
  • John A. Wolff
  • Frances M. Deegan
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

In Tenerife, lavas of the recent Teide–Pico Viejo central complex show a marked bimodality in composition from initially mafic lava (200–30 ka) to highly differentiated phonolite (30–0 ka). Groundmass Sr–Nd–Pb–O and feldspar 18O data demonstrate open system behaviour for the petrogenesis of Teide–Pico Viejo felsic lavas, but contamination by ocean sediment can be excluded due to the low 206Pb/204Pb ratios of North Atlantic sediment. Isotope mixing hyperbolae require an assimilant of predominantly felsic composition for the Teide–Pico Viejo succession. Unsystematic and heterogeneous variation of 18O in fresh and unaltered feldspars across the Teide–Pico Viejo succession indicates magmatic addition of diverse 18O assimilants, best matched by nepheline syenites that occur as fresh and altered lithic blocks in voluminous pre-Teide ignimbrite deposits. Rare earth element modelling indicates that nepheline syenite needs to be melted in bulk to form a suitable end-member composition. Energy-Constrained Assimilation Fractional Crystallisation (EC-AFC) modelling reproduces the bulk of the succession, which implies that the petrogenesis of Teide–Pico Viejo lavas is governed by the coupled assimilation of nepheline syenite during fractional crystallisation. The most differentiated (and most radiogenic) lava computes to >97.8 % assimilant, likely represented by a nepheline syenite bulk melt that formed by underplating with juvenile mafic material. These recent research developments therefore recognise a wider variability of magmatic differentiation processes at Teide–Pico Viejo than previously considered.

Keywords

Fractional Crystallisation Country Rock Mafic Magma Nepheline Syenite Felsic Magma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite-phonolite lineages of the Teide-Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936CrossRefGoogle Scholar
  2. Abratis M, Schmincke HU, Hansteen T (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91:562–582CrossRefGoogle Scholar
  3. Andújar J, Costa F, Martí J, Wolff JA, Carroll MR (2008) Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming El Abrigo eruption, Tenerife (Canary Islands). Chem Geol 257:173–191CrossRefGoogle Scholar
  4. Andújar J, Costa F, Martí J (2010) Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain). Bull Volcanol 72:381–395CrossRefGoogle Scholar
  5. Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955CrossRefGoogle Scholar
  6. Aparicio A, Tassinari CCG, García R, Araña V (2010) Sr and Nd isotope composition of the metamorphic, sedimentary and ultramafic xenoliths of Lanzarote (Canary Islands): implications for magma sources. J Volcanol Geotherm Res 189:143–150CrossRefGoogle Scholar
  7. Bindeman IN (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478CrossRefGoogle Scholar
  8. Bryan SE, Martí J, Leosson M (2002) Petrology and geochemistry of the Bandas del Sur Formation, Las Cañadas Edifice, Tenerife (Canary Islands). J Petrol 43:1815–1856CrossRefGoogle Scholar
  9. Cann JR (1968) Bimodal distribution of rocks from volcanic islands. Earth Planet Sci Lett 4:479–480CrossRefGoogle Scholar
  10. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051CrossRefGoogle Scholar
  11. Clague DA (1978) The oceanic basalt-trachyte association: an explanation of the daly gap. J Geol 86:739–743CrossRefGoogle Scholar
  12. DePaolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  13. Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Duffield WA, Ruiz J (1998) A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems. J Volcanol Geotherm Res 87:7–13CrossRefGoogle Scholar
  15. Galipp K, Klügel A, Hansteen TH (2006) Changing depths of magma fractionation and stagnation during the evolution of an oceanic island volcano: La Palma (Canary Islands). J Volcanol Geotherm Res 155:285–306CrossRefGoogle Scholar
  16. Garcia MO, Frey FA, Grooms DG (1986) Petrology of volcanic rocks from Kaula Island, Hawaii. Contrib Mineral Petrol 94:461–471CrossRefGoogle Scholar
  17. Gurenko AA, Hoernle KA, Hauff F, Schmincke HU, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd-Sr-Pb-O-He-Ar isotope signatures of shield stage lavas from the central and western Canary Islands: Insights into mantle and crustal processes. Chem Geol 233:75–112Google Scholar
  18. Hansteen TH, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193:181–193CrossRefGoogle Scholar
  19. Hill DP, Pollitz F, Newhall C (2002) Earthquake-volcano interactions. Phys Today, pp 41–47Google Scholar
  20. Hobson A, Bussy F, Hernandez J (1998) Shallow-level migmatization of gabbros in a metamorphic contact aureole, fuerteventura basal complex, Canary Islands. J Petrol 39:1025–1037CrossRefGoogle Scholar
  21. Hoernle K (1998) Geochemistry of jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880CrossRefGoogle Scholar
  22. Hoernle K, Tilton G, Schmincke H-U (1991) Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63CrossRefGoogle Scholar
  23. Holloway MI, Bussy F (2008) Trace element distribution among rock-forming minerals from metamorphosed to partially molten basic igneous rocks in a contact aureole (Fuerteventura, Canaries). Lithos 102:616–639CrossRefGoogle Scholar
  24. Holloway M, Bussy F, Vennemann T (2008) Low-pressure, water-assisted anatexis of basic dykes in a contact metamorphic aureole, Fuerteventura (Canary Islands): oxygen isotope evidence for a meteoric fluid origin. Contrib Mineral Petrol 155:111–121CrossRefGoogle Scholar
  25. Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624CrossRefGoogle Scholar
  26. Kinman WS, Neal CR, Davidson JP, Font L (2009) the dynamics of kerguelen plateau magma evolution: new insights from major element, trace element and sr isotope microanalysis of plagioclase hosted in elan bank basalts. Chem Geol 264:247–265CrossRefGoogle Scholar
  27. Klügel A, Hansteen TH, Galipp K (2005a) Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth Planet Sci Lett 236:211–226CrossRefGoogle Scholar
  28. Klügel A, Walter T, Schwarz S, Geldmacher J (2005b) Gravitational spreading causes en-echelon diking along a rift zone of Madeira Archipelago: an experimental approach and implications for magma transport. Bull Volcanol 68:37–46CrossRefGoogle Scholar
  29. Krastel S, Schmincke H-U (2002) Crustal structure of northern Gran Canaria, Canary Islands, deduced from active seismic tomography. J Volcanol Geotherm Res 115:153–177CrossRefGoogle Scholar
  30. Longpré M-A, Troll VR, Hansteen TH (2008) Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). J Geophys Res 113:B08203. doi: 10.1029/2007jb005422 CrossRefGoogle Scholar
  31. Longpré M-A, Troll VR, Walter TR, Hansteen TH (2009) Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: Some repercussions of giant landslides on ocean island magmatism. Geochem Geophys Geosyst 10:Q12017. doi: 10.1029/2009gc002892 CrossRefGoogle Scholar
  32. Manconi A, Longpré M-A, Walter TR, Troll VR, Hansteen TH (2009) The effects of flank collapses on volcano plumbing systems. Geology 37:1099–1102CrossRefGoogle Scholar
  33. Márquez A, López I, Herrera R, Martín-González F, Izquierdo T, Carreño F (2008) Spreading and potential instability of Teide volcano, Tenerife, Canary Islands. Geophys Res Lett 35:L05305. doi: 10.1029/2007GL032625 CrossRefGoogle Scholar
  34. Marsh BD (2004) A magmatic mush column rosetta stone: the McMurdo dry valleys of antarctica. EOS Trans AGU 85:497–508CrossRefGoogle Scholar
  35. Marshall LA, Sparks RSJ (1984) Origin of some mixed-magma and net-veined ring intrusions (London, UK). J Geol Soc 141:171–182CrossRefGoogle Scholar
  36. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRefGoogle Scholar
  37. Martí J, Hurlimann M, Ablay GJ, Gudmundsson A (1997) Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic ocean islands. Geology 25:879–882CrossRefGoogle Scholar
  38. Meade FC, Chew DM, Troll VR, Ellam RM, Page LM (2009) Magma Ascent along a Major Terrane Boundary: Crustal Contamination and Magma Mixing at the Drumadoon Intrusive Complex, Isle of Arran, Scotland. J Petrol 50:2345–2374CrossRefGoogle Scholar
  39. Palacz ZA, Wolff JA (1989) Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits. Geol Soc Spec Publ 42:147–159CrossRefGoogle Scholar
  40. Petford N, Gallagher K (2001) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193:483–499CrossRefGoogle Scholar
  41. Pinel V, Jaupart C (2000) The effect of edifice load on magma ascent beneath a volcano. Phil Trans R Soc Lond 358:1515–1532CrossRefGoogle Scholar
  42. Robertson AHF, Stillman CJ (1979) Submarine volcanic and associated sedimentary rocks of the Fuerteventura basal complex, Canary Islands. Geol Mag 116:203–214CrossRefGoogle Scholar
  43. Simonsen SL, Neumann ER, Seim K (2000) Sr-Nd-Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). J Volcanol Geotherm Res 103:299–312CrossRefGoogle Scholar
  44. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes i: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42:999–1018CrossRefGoogle Scholar
  45. Spera FJ, Bohrson WA (2002) Energy-constrained open-system magmatic processes 3. Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAFC). Geochem Geophys Geosyst 3, doi: 10.1029/2002gc000315
  46. Spera FJ, Bohrson WA (2004) Open-system magma chamber evolution: an energy-constrained geochemical model incorporating the effects of concurrent eruption, recharge, variable assimilation and fractional crystallization (EC-E’RAFC). J Petrol 45:2459–2480CrossRefGoogle Scholar
  47. Staudigel H, Schmincke H-U (1984) The Pliocene seamount series of La Palma/Canary Islands. J Geophys Res 89, doi: 10.1029/JB089iB13p11195
  48. Stillman CJ, Fúster JM, Bennell Baker MJ, Muñoz M, Smewing JD, Sagredo J (1975) Basal complex of Fuerteventura (Canary Islands) is an oceanic intrusive complex with rift-system affinities. Nature 257:469–471CrossRefGoogle Scholar
  49. Stroncik N, Klügel A, Hansteen T (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Mineral Petrol 157:593–607CrossRefGoogle Scholar
  50. Sun SS (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos Trans R Soc London, Ser A 297:409–445CrossRefGoogle Scholar
  51. Thompson G, Smith I, Malpas J (2001) Origin of oceanic phonolites by crystal fractionation and the problem of the Daly gap: an example from Rarotonga. Contrib Mineral Petrol 142:336–346CrossRefGoogle Scholar
  52. Troll VR, Chadwick JP, Ellam RM, McDonnell S, Emeleus CH, Meighan IG (2005) Sr and Nd isotope evidence for successive crustal contamination of Slieve Gullion ring-dyke magmas, Co. Armagh. Ireland. Geol Mag 142:659–668CrossRefGoogle Scholar
  53. Troll VR, Klügel A, Longpré MA, Burchardt S, Deegan FM, Carracedo JC, Wiesmaier S, Kueppers U, Dahren B, Blythe LS, Hansteen TH, Freda C, Budd DA, Jolis EM, Jonsson E, Meade FC, Harris C, Berg SE, Mancini L, Polacci M, Pedroza K (2012) Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption. Solid Earth 3:97–110CrossRefGoogle Scholar
  54. Wellman TR (1970) The stability of sodalite in a synthetic syenite plus aqueous chloride fluid system. J Petrol 11:49–72CrossRefGoogle Scholar
  55. Wiesmaier S (2010) Magmatic differentiation and bimodality in oceanic island settings—implications for the petrogenesis of magma in Tenerife. Trinity College Dublin, SpainGoogle Scholar
  56. Wiesmaier S, Troll VR, Carracedo JC, Ellam RM, Bindeman IN, Wolff JA (2012) Bimodality of Lavas in the Teide–Pico Viejo succession in Tenerife—The role of crustal melting in the origin of recent phonolites. J Petrol. doi: 10.1093/petrology/egs056 Google Scholar
  57. Wolff JA, Palacz ZA (1989) Lead isotope and trace element variation in Tenerife pumices—evidence for recycling within an ocean island volcano. Mineral Mag 53:519–525CrossRefGoogle Scholar
  58. Wolff JA, Grandy JS, Larson PB (2000) Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from the Diego Hernandez Formation, Las Cañadas, Tenerife. J Volcanol Geotherm Res 103:343–366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Wiesmaier
    • 1
  • Valentin R. Troll
    • 2
  • Juan Carlos Carracedo
    • 3
  • Robert M. Ellam
    • 4
  • Ilya Bindeman
    • 5
  • John A. Wolff
    • 6
  • Frances M. Deegan
    • 7
  1. 1.Geo- and Environmental SciencesLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Department of Earth SciencesCEMPEG, Uppsala UniversityUppsalaSweden
  3. 3.Department of Physics (Geology)GEOVOL, University of Las PalmasGran CanariaSpain
  4. 4.Scottish Universities Environmental Research Centre (SUERC)ScotlandUK
  5. 5.Department of Geological SciencesUniversity of OregonEugeneUSA
  6. 6.Department of GeologyWashington State UniversityPullmanUSA
  7. 7.Laboratory for Isotope GeologySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations