Skip to main content

Fluid Geochemistry of Tacaná Volcano-Hydrothermal System

  • Chapter
  • First Online:

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

Tacaná hosts an active volcano-hydrothermal system, characterized by boiling temperature fumaroles, near the summit (3,600–3,800 m asl), and bubbling degassing thermal springs near its base (1,000–2,000 m asl). The magmatic signature of gases rising to the surface is attested by their high CO2 contents (δ13CCO2 = −3.6 ± 1.3 ‰), and relatively high 3He/4He ratios (6.0 ± 0.9 RA), with a CO2/3He ratio typical for the Central American Arc (2.3 × 1010–6.9 × 1011). Such magmatic signature is practically identical for the near-summit fumaroles, and the bubbling gases at the base of Tacaná edifice. Besides the HCO3-enrichment in thermal spring waters, the springs (pH 5.8–6.7) show a SO4-and minor Cl-enrichment: a CO2 and H2S + SO2-rich magmatic steam condenses into a deeper geothermal aquifer, and the resulting hydrothermal fluid mixes with meteoric waters near the surface. The recharge area for the thermal springs is located at higher elevations (>400 m higher than spring outlet elevation), as inferred from the δD-δ18O data for rivers, thermal and cold springs. These general insights of the Tacaná volcano-hydrothermal system serve as the baseline for future volcanic surveillance, and geothermal prospection. The main locus of hydrothermal activity is located inside the Tacaná horseshoe-shaped crater in the northwestern sector of the volcanic edifice. In terms of volcanic hazard, this sector can be considered the most probable site for future phreatic activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aiuppa A, Allard P, D’Alessandro W, Michel A, Parello F, Treuil M, Valenza M (2000) Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim Cosmochim Acta 64(11):1827–2184

    Article  Google Scholar 

  • Aiuppa A, Inguaggiato S, McGonigle AJS, O’Dwyer MO, Oppenheimer C, Padgett MJ, Rouwet D, Valenza M (2005) H2S fluxes from Mt. Etna, Stromboli, and Vulcano (Italy) and implications for sulfur budget at volcanoes. Geochim Cosmochim Acta 69:1861–1871

    Article  Google Scholar 

  • Andres RJ, Rose WI, Stoiber RE, Williams SN, Matías A, Morales R (1993) A summary of sulfur dioxide emission rate measurements from Guatemalan volcanoes. Bull Volcanol 55:379–388

    Article  Google Scholar 

  • Armienta MA, De la Cruz-Reyna S (1995) Some hydro-geochemical fluctuations observed in Mexico related to volcanic activity. Appl Geochem 10:215–227

    Article  Google Scholar 

  • Böse E (1902) Breve noticia sobre el estado actual del Volcán Tacaná, Chiapas. Memorias de la Sociedad Científica Antonio Alzate 18:266–270

    Google Scholar 

  • Chiodini G, Marini L, Russo M (2001) Geochemical evidence for the existence of high-temperature hydrothermal brines at Vesuvio volcano, Italy. Geochim Cosmochim Acta 65(13):2129–2147

    Article  Google Scholar 

  • De la Cruz-Reyna S, Armienta MA, Zamora V, Juárez F (1989) Chemical changes in spring waters at Tacaná volcano, Chiapas, Mexico: a possible precursor of the May 1986 seismic crisis and phreatic explosion. J Volcanol Geoth Res 38:45–353

    Google Scholar 

  • Delfín FG Jr, Villarosa HG, Layugan DB, Clemente V, Candelaria MR, Ruaya JR (1996) Geothermal exploration of the pre-1991 Pinatubo hydrothermal system. In: Newhal CG, Punongbayan S (eds) Fire and mud. University of Washington Press, Seattle, pp 197–212

    Google Scholar 

  • Fischer TP, Sturchio NC, Stix J, Arehart GB, Counce D, Williams SN (1997) The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. J Volcanol Geoth Res 77:229–253

    Article  Google Scholar 

  • Frank D (1995) Surficial extent and conceptual model of hydrothermal system at Mount Rainier, Washington. J Volcanol Geoth Res 65:51–80

    Article  Google Scholar 

  • García-Palomo A, Macías JL, Arce JL, Mora JC, Hughes S, Saucedo R, Espíndola JM, Escobar R, Layer P (2006) Geological evolution of the Tacaná Volcanic Complex, Mexico-Guatemala. GSA Special Paper 412 Natural Hazards in Central America, pp 39–57

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Google Scholar 

  • Giggenbach WF (1992) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proc Int Symp Water-Rock Interaction. Balkema 7:873–878

    Google Scholar 

  • Giggenbach WF, Corrales Soto R (1992) Isotopic and chemical composition of water and steam discharges from volcanic-magmatic–hydrothermal systems of the guanacaste geothermal province, Costa Rica. Appl Geochem 7:309–332

    Article  Google Scholar 

  • Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of Parbati Valley geothermal discharges, NW Himalaya, India. Geothermics 12:199–222

    Article  Google Scholar 

  • Giggenbach WF, García N, Londoño A, Rodríguez L, Rojas N, Calvache ML (1990) The chemistry of fumarolic vapor and thermal-spring-discharges from the Nevado del Ruíz volcanic–magmatic–hydrothermal system, Colombia. J Volcanol Geoth Res 42:13–39

    Article  Google Scholar 

  • Goff F, McMurtry GM (2000) Tritium and stable isotopes of magmatic waters. J Volcanol Geoth Res 97:347–396

    Article  Google Scholar 

  • Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling at subduction zones. Rev Mineral Geochem 47:319–370

    Article  Google Scholar 

  • Inguaggiato S, Mazot A, Diliberto IS, Inguaggiato C, Madonia P, Rouwet D, Vita F (2012) Total CO2 output from Vulcano Island (Aeolian Islands, Italy). Geochem Geophys Geosyst 13:Q02012. doi:10.1029/2011GC003920

    Article  Google Scholar 

  • Ishikawa H, Ohba T, Fujimaki H (2007) Sr isotope diversity of hot spring and volcanic lake waters from Zāo volcano, Japan. J Volcanol Geoth Res 166:7–16

    Article  Google Scholar 

  • Kakihana H, Ossaka T, Oi T, Musashi M, Okamoto M, Nomura M (1987) Boron isotopic ratios of some hot spring waters in the Kusatsu-shirane area, Japan. Geochem J 21:133–137

    Article  Google Scholar 

  • Lewicki JL, Fischer T, Williams SN (2000) Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution. Bull Volcanol 62:347–361

    Article  Google Scholar 

  • Macías JL, Espíndola JM, García-Palomo A, Scott KM, Hughes S, Mora JC (2000) Late Holocene Peléan-style eruption at Tacaná volcano, Mexico and Guatemala: past, present and future hazards. GSA Bull 112:1234–1249

    Article  Google Scholar 

  • Macías JL, Arce JL, García-Palomo A, Mora JC, Layer PW, Espíndola JM (2010) Late-Pleistocene flank collapse triggered by dome growth at Tacaná volcano, México-Guatemala, and its relationship to the regional stress regime. Bull Volcanol 72:33–53

    Article  Google Scholar 

  • Martini M, Capaccioni B, Giannini L (1987) Ripresa dell’attività sismica e fumarolica al Vulcano di Tacaná (Chiapas, Messico) dopo un quarantennio di quiescenza. Estrato da Bolletino del Gruppo Nazionale per la Vulcanologia, pp 467–470

    Google Scholar 

  • Mazot A, Rouwet D, Taran Y, Inguaggiato S, Varley N (2011) CO2 and He degassing at El Chichón volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics. Bull Volcanol 73:423–441

    Article  Google Scholar 

  • Medina A (1986) Geoquímica de aguas y gases del volcán Tacaná. Rev Geotermia Geoenergía 2:95–110

    Google Scholar 

  • Mora JC, Macías JL, García-Palomo A, Arce JL, Espíndola JM, Manetti P, Vaselli O, Sánchez JM (2004) Petrology and geochemistry of the Tacaná Volcanic Complex, Mexico-Guatemala: evidence for the last 40,000 years of activity. Geofis Int 43:331–359

    Google Scholar 

  • Mülleried FKG (1951) La reciente actividad del volcán Tacaná, Estado de Chiapas, a fines de 1949 y principios de 1950. Informe del Instituto de Geología de la UNAM, 28

    Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2000) D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geoth Res 97:329–346

    Article  Google Scholar 

  • Palandri JL, Reed M (2001) Reconstruction in situ composition of sedimentary formation waters. Geochim Cosmochim Acta 65:1741–1767

    Article  Google Scholar 

  • Pang ZH, Reed M (1998) Theoretical chemical thermometry on geothermal waters: problems and methods. Geochim Cosmochim Acta 62(6):1083–1091

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report 99–4259 p 312

    Google Scholar 

  • Pineau F, Javoy M (1983) Carbon isotopes in mid ocean ridge basalts. Earth Planet Sci Lett 62:239–257

    Article  Google Scholar 

  • Polyak B (2000) Helium isotope tracer of geothermal activity. In: Proceedings of World Geothermal Congress, Kyushu-Tohoku, Japan, May 28–June 10, pp 1581–1586

    Google Scholar 

  • Reed M (1982) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and an aqueous phase. Geochim Cosmochim Acta 46:513–528

    Article  Google Scholar 

  • Rodríguez LA, Watson IM, Rose WI, Branan YK, Bluth GJS, Chigna G, Matías O, Escobar D, Carn SA, Fischer TP (2004) SO2 emissions to the atmosphere from active volcanoes in Guatemala and El Salvador, 1999-2002. J Volcanol Geoth Res 138:325–344

    Article  Google Scholar 

  • Rouwet D (2006) Estudio geoquímico comparativo de los sistemas hidrotermales de los volcanes activos en Chiapas: El Chichón y Tacaná. PhD thesis, Universidad Nacional Autónoma de México, México DF, p 216

    Google Scholar 

  • Rouwet D, Taran Y, Inguaggiato S, Varley N (2004) Hydrothermal activity at Tacaná volcano, Mexico-Guatemala. In: Wanty R, Seal R II (eds) WRI-11. Taylor and Francis Group, London, pp 173–176

    Google Scholar 

  • Rouwet D, Inguaggiato S, Taran Y, Varley N, Santiago SJA (2009) Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico-Guatemala): implications for volcanic surveillance. Bull Volcanol 71:319–335

    Article  Google Scholar 

  • Rouwet D, Mora-Amador R, Ramírez-Umaña C, González G (2010) Hydrogeochemical model of the Irazú and Turrialba “twin volcanoes” (Costa Rica). In: Abstracts of AGU SF fall meeting, V23A, p 2392

    Google Scholar 

  • Rowe GL Jr, Brantley SL, Fernández JF, Borgia A (1995) The chemical and hydrologic structure of Poás Volcano, Costa Rica. J Volcanol Geoth Res 64:233–267

    Article  Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 19:265–274

    Article  Google Scholar 

  • Sano Y, Williams SN (1996) Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett 23:2749–2752

    Article  Google Scholar 

  • Sano Y, Wakita H, Williams SN (1990) Helium-isotope systematics at Nevadodel Ruíz volcano, Colombia: implications for the volcanic hydrothermal system. J Volcanol Geoth Res 42:41–52

    Article  Google Scholar 

  • Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513

    Article  Google Scholar 

  • Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (2000) Encyclopedia of volcanoes. Academic Press, San Diego, p 1442

    Google Scholar 

  • Snyder G, Poreda R, Fehn U, Hunt A (2003) Sources of nitrogen and methane in central American geothermal settings: noble gas and 129I evidence for crustal and magmatic volatile components. Geochem Geophys Geosyst 4:9001. doi:10.1029/2002GC000363

    Article  Google Scholar 

  • Stimac JA, Goff F, Counce D, Larocque ACL, Hilton DR, Morgenstern U (2004) The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after the eruption. Bull Volcanol 66:149–167

    Article  Google Scholar 

  • Sturchio NC, Williams SN (1990) Variations in chemistry of acid-sulfate-chloride springs at Nevado del Ruíz volcano, Colombia: November 1985 through December 1988. J Volcanol Geoth Res 42:203–210

    Article  Google Scholar 

  • Sturchio NC, Williams SN, Garcia NP, Londoño AC (1988) The hydrothermal system of Nevado del Ruíz volcano, Colombia. Bull Volcanol 50:399–412

    Article  Google Scholar 

  • Taran YA, Pokrovsky BG, Dubik YM (1989) Isotopic composition and origin of water from andesitic magmas (trans: Dokl). Ac Sci USSR 304:440–443

    Google Scholar 

  • Taran Y, Gavilanes JC, Cortés A (2002) Chemical and isotopic composition of fumarolic gases and the SO2 flux from Volcán de Colima, México, between the 1994 and 1998 eruptions. J Volcanol Geoth Res 117:105–119

    Article  Google Scholar 

  • Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. Implications for monitoring of volcanic activity. J Volcanol Geoth Res 178:224–236

    Article  Google Scholar 

  • Tassi F, Vaselli O, Capaccioni B, Giolito C, Duarte E, Fernández E, Minissale A, Magro G (2005) The hydrothermal-volcanic system of Rincón de la Vieja volcano (Costa Rica): a combined (inorganic and organic) geochemical approach to understanding the origin of the fluid discharges and its possible application to volcanic surveillance. J Volcanol Geoth Res 148:315–333

    Article  Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotopic variation of C, H, and S. In: Valley JW et al (ed) Stable isotopes in high temperature geological processes. Mineralogical Society of America, Washington, DC, pp 185–225 (Rev Miner 16)

    Google Scholar 

  • van Soest MC, Hilton DR, Kreulen R (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochim Cosmochim Acta 62:3323–3335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Rouwet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rouwet, D., Taran, Y., Inguaggiato, S. (2015). Fluid Geochemistry of Tacaná Volcano-Hydrothermal System. In: Scolamacchia, T., Macías, J. (eds) Active Volcanoes of Chiapas (Mexico): El Chichón and Tacaná. Active Volcanoes of the World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25890-9_7

Download citation

Publish with us

Policies and ethics