Drawing Cubic Graphs with the Four Basic Slopes

  • Padmini Mukkamala
  • Dömötör Pálvölgyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7034)


We show that every cubic graph can be drawn in the plane with straight-line edges using only the four basic slopes, {0,π/4,π/2,3π/4}. We also prove that four slopes have this property if and only if we can draw K 4 with them.


Planar Graph Hamiltonian Cycle Slope Parameter Common Neighbor Outerplanar Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
  3. 3.
    Ambrus, G., Barát, J.: A contribution to queens graphs: A substitution method. Discrete Mathematics 306(12), 1105–1114 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambrus, G., Barát, J., Hajnal, P.: The slope parameter of graphs. Acta Sci. Math (Szeged) 72, 875–889 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the Perspectives Opened By Right Angle Crossing Drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 21–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Arikushi, K., Fulek, R., Keszegh, B., Morić, F., Tóth, C.D.: Graphs that Admit Right Angle Crossing Drawings. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electr. J. Comb. 13(1) (2006)Google Scholar
  8. 8.
    Bell, J., Stevens, B.: A survey of known results and research areas for n-queens. Discrete Mathematics 309, 1–31 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Didimo, W., Eades, P., Liotta, G.: Drawing Graphs With Right Angle Crossings. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dujmovic, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dujmović, V., Suderman, M., Wood, D.R.: Really Straight Graph Drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 122–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discrete & Computational Geometry 37(4), 641–670 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: Snoeyink, J., Boissonnat, J.-D. (eds.) Symposium on Computational Geometry, pp. 340–346. ACM (2004)Google Scholar
  15. 15.
    Engelstein, M.: Drawing graphs with few slopes. Intel Competition for high school students (2005)Google Scholar
  16. 16.
    Eppstein, D.: Separating Thickness From Geometric Thickness. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 150–161. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. 13(3), 161–171 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesař, M., Vyskočil, T.: The Planar Slope Number Of Planar Partial 3-Trees Of Bounded Degree. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 304–315. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Sem. Univ. Hamburg 39, 88–95 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing Planar Graphs of Bounded Degree With Few Slopes. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 293–304. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. Comput. Geom. 40(2), 138–147 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Cubic graphs have bounded slope parameter. J. Graph Algorithms Appl. 14(1), 5–17 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Meringer, M.: Fast generation of regular graphs and construction of cages. J. Graph Theory 30, 137–146 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mukkamala, P.: Obstacles, Slopes and Tic-Tac-Toe: An excursion in discrete geomety and combinatorial game theory. PhD thesis, Rutgers, The State University of New Jersey (2011),
  25. 25.
    Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. CoRR, abs/1106.1973 (2011)Google Scholar
  26. 26.
    Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions. Comput. Geom. 42(9), 842–851 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey. Graphs Combin. 14, 59–73 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electr. J. Comb. 13(1) (2006)Google Scholar
  29. 29.
    Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. Comput. J. 37(2), 139–142 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Padmini Mukkamala
    • 1
  • Dömötör Pálvölgyi
    • 1
  1. 1.McDaniel CollegeBudapest and Eötvös UniversityBudapestHungary

Personalised recommendations