Advertisement

Byzantine Fault-Tolerance with Commutative Commands

  • Pavel Raykov
  • Nicolas Schiper
  • Fernando Pedone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7109)

Abstract

State machine replication is a popular approach to increasing the availability of computer services. While it has been largely studied in the presence of crash-stop failures and malicious failures, all existing state machine replication protocols that provide byzantine fault-tolerance implement some variant of atomic broadcast. In this context, this paper makes two contributions. First, it presents the first byzantine fault-tolerant generic broadcast protocol. Generic broadcast is more general than atomic broadcast, in that it allows applications to deliver commutative commands out of order—delivering a command out of order can be done in fewer communication steps than delivering a command in the same order. Second, the paper presents an efficient state machine replication protocol that tolerates byzantine failures. Our protocol requires fewer message delays than the best existing solutions under similar conditions. Moreover, processing of commutative commands on replicas requires only two MAC operations. The protocol is speculative in that it may rollback non-commutative commands.

Keywords

Correct Process Communication Delay Network Delay Execution Order Current Round 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 558–565 (1978)CrossRefzbMATHGoogle Scholar
  2. 2.
    Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A tutorial 22, 299–319 (1990)Google Scholar
  3. 3.
    Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative byzantine fault tolerance. ACM Transactions on Computer Systems 27, 1–39 (2009)CrossRefGoogle Scholar
  4. 4.
    Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-scalable byzantine fault-tolerant services. In: SOSP 2005: Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, pp. 59–74. ACM, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems 20, 398–461 (2002)CrossRefGoogle Scholar
  6. 6.
    Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: HQ replication: a hybrid quorum protocol for byzantine fault tolerance. In: OSDI 2006: Proceedings of the 7th Symposium on Operating Systems Design and Implementation, pp. 177–190. USENIX Association, Berkeley (2006)Google Scholar
  7. 7.
    Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 bft protocols. In: EuroSys 2010: Proceedings of the 5th European Conference on Computer Systems, pp. 363–376. ACM, New York (2010)Google Scholar
  8. 8.
    Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Thrifty Generic Broadcast. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 268–283. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Lamport, L.: Generalized consensus and paxos. Technical report, Microsoft Research MSR-TR-2005-33 (2005)Google Scholar
  10. 10.
    Pedone, F., Schiper, A.: Handling message semantics with generic broadcast protocols. Distributed Computing 15, 97–107 (2002)CrossRefGoogle Scholar
  11. 11.
    Raykov, P., Schiper, N., Pedone, F.: Byzantine fault-tolerance with commutative commands. Technical report, University of Lugano (2011), http://www.inf.usi.ch/faculty/pedone/Paper/2011/2011OPODIS-full.pdf
  12. 12.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 26, 96–99 (1983)CrossRefzbMATHGoogle Scholar
  13. 13.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32, 374–382 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal of the ACM 43, 225–267 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ben-Or, M.: Another advantage of free choice (extended abstract): Completely asynchronous agreement protocols. In: PODC 1983: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pp. 27–30. ACM, New York (1983)CrossRefGoogle Scholar
  17. 17.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35, 288–323 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Toueg, S.: Randomized byzantine agreements. In: PODC 1984: Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, pp. 163–178. ACM, New York (1984)CrossRefGoogle Scholar
  19. 19.
    Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and Efficient Asynchronous Broadcast Protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Lamport, L.: Lower bounds for asynchronous consensus. Distributed Computing 19, 104–125 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)CrossRefGoogle Scholar
  22. 22.
    Malkhi, D., Reiter, M., Lynch, N.: A correctness condition for memory shared by byzantine processes (1998) (unpublished manuscript)Google Scholar
  23. 23.
    Aiyer, A.S., Alvisi, L., Bazzi, R.A., Clement, A.: Matrix Signatures: From MACs to Digital Signatures in Distributed Systems. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 16–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Kotla, R., Dahlin, M.: High-throughput byzantine fault tolerance. In: International Conference on Dependable Systems and Networks, DSN (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pavel Raykov
    • 1
  • Nicolas Schiper
    • 2
  • Fernando Pedone
    • 2
  1. 1.Swiss Federal Institute of Technology (ETH)ZurichSwitzerland
  2. 2.University of Lugano (USI)LuganoSwitzerland

Personalised recommendations