A Polynomial Time Algorithm for Bounded Directed Pathwidth

  • Hisao Tamaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)


We give a polynomial time algorithm for bounded directed pathwidth. Given a positive integer k and a digraph G with n vertices and m edges, it runs in O(m n k + 1) time and constructs a directed path-decomposition of G of width at most k if one exists and otherwise reports the non-existence.


Undirected Graph Search Tree Polynomial Time Algorithm Boolean Network Linear Time Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Journal on Matrix Analysis and Applications 8(2), 277–284Google Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24Google Scholar
  3. 3.
    Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics 22(2), 161–172 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-Width and Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of Graphs. Journal of Algorithms 21, 358–402 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On Digraph Width Measures in Parameterized Algorithmics. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hunter, P., Kreutzer, S.: Digraph Measures: Kelly Decompositions, Games, and Orderings. In: Proc. the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 637–644 (2007)Google Scholar
  11. 11.
    Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Journal of Combinatorial Theory Series B 82(1), 138–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of finding a minimum-clique-number interval graph containing a given graph as a subgraph. In: Proc. International Symposium on Circuits and Systems, pp. 657–660 (1979)Google Scholar
  13. 13.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Information Processing Letters 42, 345–350 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lampis, M., Kaouri, G., Mitsou, V.: On the Algorithmic Effectiveness of Digraph Decompositions and Complexity Measures. In: Proc. of 19th International Symposium on Algorithms and Computation, pp. 220–231 (2008)Google Scholar
  15. 15.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  16. 16.
    Obdržálek, J.: DAG-width - Connectivity Measure for Directed Graphs. In: Proc. the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 814–821 (2006)Google Scholar
  17. 17.
    Robertson, N., Seymour, P.: Graph minors. I. Excluding a forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Robertson, N., Seymour, P.: Graph minors III: Planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.: Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory, Series B 92(2), 325–335 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Safari, M.A.: D-Width: A More Natural Measure for Directed Tree Width. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Tamaki, H.: A directed path-decomposition approach to exactly identifying attractors of boolean networks. In: Proc. 10th International Symposium on Communications and Information Technologies, pp. 844–849 (2010)Google Scholar
  22. 22.
    Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed pathwidth. Discrete Applied Mathematics 156(10), 1822–1837 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hisao Tamaki
    • 1
  1. 1.Department of Computer ScienceMeiji UniversityKawasakiJapan

Personalised recommendations