Approximability of the Path-Distance-Width for AT-free Graphs

  • Yota Otachi
  • Toshiki Saitoh
  • Katsuhisa Yamanaka
  • Shuji Kijima
  • Yoshio Okamoto
  • Hirotaka Ono
  • Yushi Uno
  • Koichi Yamazaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

The path-distance-width of a graph measures how close the graph is to a path. We consider the problem of determining the path-distance-width for graphs with chain-like structures such as k-cocomparability graphs, AT-free graphs, and interval graphs. We first show that the problem is NP-hard even for a very restricted subclass of AT-free graphs. Next we present simple approximation algorithms with constant approximation ratios for graphs with chain-like structures. For instance, our algorithm for AT-free graphs has approximation factor 3 and runs in linear time. We also show that the problem is solvable in polynomial time for the class of cochain graphs, which is a subclass of the class of proper interval graphs.

Keywords

Bipartite Graph Linear Time Approximation Ratio Interval Graph Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blache, G., Karpinski, M., Wirtgen, J.: On approximation intractability of the bandwidth problem, ECCC TR98-014 (1998)Google Scholar
  2. 2.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)Google Scholar
  3. 3.
    Chang, J.M., Ho, C.W., Ko, M.T.: Powers of asteroidal triple-free graphs with applications. Ars Combin. 67, 161–173 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inform. Process. Lett. 55, 99–104 (1995)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM J. Discrete Math. 10, 399–430 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  8. 8.
    Golovach, P., Heggernes, P., Kratsch, D., Lokshtanov, D., Meister, D., Saurabh, S.: Bandwidth on AT-Free Graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 573–582. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and forbidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)MathSciNetMATHGoogle Scholar
  10. 10.
    Johnson, D.S.: The NP-completeness column: An ongoing guide. J. Algorithms 6, 434–451 (1985)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kleitman, D.J., Vohra, R.V.: Computing the bandwidth of interval graphs. SIAM J. Discrete Math. 3, 373–375 (1990)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kloks, T., Kratsch, D., Müller, H.: Approximating the bandwidth for asteroidal triple-free graphs. J. Algorithms 32, 41–57 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kobayashi, Y.: Private communication (September 2010)Google Scholar
  15. 15.
    Mahesh, R., Rangan, C.P., Srinivasan, A.: On finding the minimum bandwidth of interval graphs. Inform. and Comput. 95, 218–224 (1991)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Discrete Appl. Math. 79, 171–188 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sprague, A.P.: An O( n logn ) algorithm for bandwidth of interval graphs. SIAM J. Discrete Math. 7, 213–220 (1994)CrossRefMATHGoogle Scholar
  18. 18.
    Yamazaki, K.: On approximation intractability of the path-distance-width problem. Discrete Appl. Math. 110, 317–325 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yamazaki, K., Bodlaender, H.L., de Fuiter, B., Thilikos, D.M.: Isomorphism for graphs of bounded distance width. Algorithmica 24, 105–127 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yota Otachi
    • 1
  • Toshiki Saitoh
    • 2
  • Katsuhisa Yamanaka
    • 3
  • Shuji Kijima
    • 4
  • Yoshio Okamoto
    • 5
  • Hirotaka Ono
    • 6
  • Yushi Uno
    • 7
  • Koichi Yamazaki
    • 8
  1. 1.Graduate School of Information SciencesTohoku University, JSPSSendaiJapan
  2. 2.Erato Minato Discrete Structure Manipulation System ProjectJapan Science and Technology AgencySapporoJapan
  3. 3.Department of Electrical Engineering and Computer ScienceIwate UniversityMoriokaJapan
  4. 4.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan
  5. 5.Center for Graduate Education InitiativeJAISTNomiJapan
  6. 6.Department of Economic EngineeringKyushu UniversityHigashi-kuJapan
  7. 7.Department of Mathematics and Information Sciences, Graduate School of ScienceOsaka Prefecture UniversityNaka-kuJapan
  8. 8.Department of Computer ScienceGunma UniversityKiryuJapan

Personalised recommendations