Advertisement

Important Separators and Parameterized Algorithms

  • Dániel Marx
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

The notion of “important separators” and bounding the number of such separators turned out to be a very useful technique in the design of fixed-parameter tractable algorithms for multi(way) cut problems. For example, the recent breakthrough result of Chen et al.[3] on the Directed Feedback Vertex Set problem can be also explained using this notion. In my talk, I will overview combinatorial and algorithmic results that can be obtained by studying such separators.

Keywords

Directed Graph Important Separator Multicut Problem Iterative Compression Parameterized Complexity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 459–468 (2011)Google Scholar
  2. 2.
    Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5) (2008)Google Scholar
  4. 4.
    Chitnis, R., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed multiway cut parameterized by the size of the cutset. Accepted to SODA (2012)Google Scholar
  5. 5.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.: On multiway cut parameterized above lower bounds. Accepted to IPEC (2011)Google Scholar
  6. 6.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)zbMATHGoogle Scholar
  9. 9.
    Heggernes, P.: van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. CoRR abs/1102.5441 (2011)Google Scholar
  10. 10.
    Lokshtanov, D., Marx, D.: Clustering with Local Restrictions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 785–797. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Marx, D.: Parameterized graph separation problems. Theoret. Comput. Sci. 351(3), 394–406 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proceedings of the 43nd ACM Symposium on Theory of Computing, pp. 469–478 (2011)Google Scholar
  13. 13.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Xiao, M.: Algorithms for Multiterminal Cuts. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 314–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dániel Marx
    • 1
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinGermany

Personalised recommendations