Advertisement

Empires Make Cartography Hard: The Complexity of the Empire Colouring Problem

  • Andrew R. A. McGrae
  • Michele Zito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

We study the empire colouring problem (as defined by Percy Heawood in 1890) for maps containing empires formed by exactly r > 1 countries each. We prove that the problem can be solved in polynomial time using s colours on maps whose underlying adjacency graph has no induced subgraph of average degree larger than s/r. However, if s ≥ 3, the problem is NP-hard for forests of paths of arbitrary lengths (if s < r) for trees (if r ≥ 2 and s < 2r) and arbitrary planar graphs (if s < 7 for r = 2, and s < 6r − 3, for r ≥ 3). The result for trees shows a perfect dichotomy (the problem is NP-hard if 3 ≤ s ≤ 2r − 1 and polynomial time solvable otherwise). The one for planar graphs proves the NP-hardness of colouring with less than 7 colours graphs of thickness two and less than 6r − 3 colours graphs of thickness r ≥ 3.

Keywords

Polynomial Time Planar Graph Complete Graph Average Degree Colour Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beineke, L.W.: Biplanar graphs: a survey. Computers and Mathematical Applications 34(11), 1–8 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beineke, L.W., Harary, F.: The thickness of the complete graph. Canadian Journal of Mathematics 17, 850–859 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brooks, R.L.: On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37, 194–197 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bryant, D.E.: Cycle decompositions of the complete graphs. In: Hilton, A.J.W., Talbot, J.M. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series, vol. 346, pp. 67–97. Cambridge University Press (2007)Google Scholar
  5. 5.
    Cooper, C., McGrae, A.R.A., Zito, M.: Martingales on Trees and the Empire Chromatic Number of Random Trees. In: Kutyłowski, M., Gebala, M., Charatonik, W. (eds.) FCT 2009. LNCS, vol. 5699, pp. 74–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. M.I.T. Press (2009)Google Scholar
  7. 7.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computer and Intractability, a Guide to the Theory of NP-Completeness. Freeman and Company (1979)Google Scholar
  9. 9.
    Gibbons, A.M.: Algorithmic Graph Theory. Cambridge University Press (1985)Google Scholar
  10. 10.
    Heawood, P.J.: Map colour theorem. Quarterly Journal of Pure and Applied Mathematics 24, 332–338 (1890)zbMATHGoogle Scholar
  11. 11.
    Hutchinson, J.P.: Coloring ordinary maps, maps of empires, and maps of the moon. Mathematics Magazine 66(4), 211–226 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jackson, B., Ringel, G.: Solution of Heawood’s empire problem in the plane. Journal für die Reine und Angewandte Mathematik 347, 146–153 (1983)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  14. 14.
    Lovász, L.: Combinatorial Problems and Exercises, 2nd edn. North-Holland (1993)Google Scholar
  15. 15.
    Lucas, E.: Récreations Mathématiqués, vol. II. Gauthier-Villars (1892)Google Scholar
  16. 16.
    McGrae, A.R., Zito, M.: Colouring Random Empire Trees. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 515–526. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    McGrae, A.R.A.: Colouring Empires in Random Trees. PhD thesis, Department of Computer Science, University of Liverpool as technical report ULCS-10-007 (2010), http://www.csc.liv.ac.uk/research/techreports/techreports.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrew R. A. McGrae
    • 1
  • Michele Zito
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations