Advertisement

Maximum Independent Set in 2-Direction Outersegment Graphs

  • Holger Flier
  • Matúš Mihalák
  • Peter Widmayer
  • Anna Zych
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

An outersegment graph is the intersection graph of line-segments lying inside a disk and having one end-point on the boundary of the disk. We present a polynomial-time algorithm for the problem of computing a maximum independent set in outersegment graphs where every segment is either horizontally or vertically aligned. We assume that a geometric representation of the graph is given as input.

Keywords

Polynomial Time Maximum Clique Intersection Graph Straight Line Segment Vertical Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics Mathematics (1999)Google Scholar
  2. 2.
    Flier, H., Mihalák, M., Schöbel, A., Widmayer, P., Zych, A.: Vertex Disjoint Paths for Dispatching in Railways. In: Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, vol. 14, pp. 61–73 (2010)Google Scholar
  3. 3.
    Fox, J., Pach, J.: Coloring K k-free intersection graphs of geometric objects in the plane. In: Proceedings of the 24th ACM Symposium on Computational Geometry (SoCG), pp. 346–354. ACM (2008)Google Scholar
  4. 4.
    Fox, J., Pach, J.: Erdős-Hajnal-type results on intersection patterns of geometric objects. In: Győri, E., Katona, G.O.H., Lovász, L. (eds.) Horizons of Combinatorics, vol. 17, pp. 79–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Fox, J., Pach, J.: A separator theorem for string graphs and its applications. Combinatorics, Probability and Computing 19(03), 371–390 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of filaments. Information Processing Letters 73(5-6), 181–188 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mark Keil, J.: The complexity of domination problems in circle graphs. Discrete Applied Mathematics 42(1), 51–63 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite. Journal of Combinatorial Theory, Series B 52(1), 53–66 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. Journal of Combinatorial Theory, Series B 52(1), 67–78 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. Journal of Combinatorial Theory, Series B 53(1), 1–4 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kratochvíl, J., Nešetřil, J.: INDEPENDENT SET and CLIQUE problems in intersection-defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae 31(1), 85–93 (1990)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Middendorf, M., Pfeiffer, F.: The max clique problem in classes of string-graphs. Discrete Mathematics 108(1-3), 365–372 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pach, J., Tóth, G.: Recognizing string graphs is decidable. Discrete & Computational Geometry 28, 593–606 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. Journal of Computer and System Sciences 67(2), 365–380 (2003); Special Issue on STOC 2002MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  16. 16.
    Unger, W.: On the k-colouring of circle-graphs. In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 61–72. Springer, Heidelberg (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Holger Flier
    • 1
  • Matúš Mihalák
    • 1
  • Peter Widmayer
    • 1
  • Anna Zych
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZürichSwitzerland

Personalised recommendations