Parameterized Complexity of Eulerian Deletion Problems

  • Marek Cygan
  • Dániel Marx
  • Marcin Pilipczuk
  • Michał Pilipczuk
  • Ildikó Schlotter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6986)

Abstract

We study a family of problems where the goal is to make a graph Eulerian by a minimum number of deletions. We completely classify the parameterized complexity of various versions: undirected or directed graphs, vertex or edge deletions, with or without the requirement of connectivity, etc. Of particular interest is a randomized FPT algorithm for making an undirected graph Eulerian by deleting the minimum number of edges.

Keywords

Directed Graph Parameterized Complexity Polynomial Kernel Edge Deletion Blue Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding minimum-cost flows by double scaling. Math. Program. 53, 243–266 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alon, N., Shapira, A., Sudakov, B.: Additive approximation for edge-deletion problems. In: FOCS, pp. 419–428 (2005)Google Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    van Bevern, R., Moser, H., Niedermeier, R.: Approximation and tidying—a problem kernel for s-plex cluster vertex deletion. Algorithmica (February 2011)Google Scholar
  5. 5.
    Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. CoRR abs/1011.4224 (2010)Google Scholar
  6. 6.
    Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154, 1824–1844 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cai, J., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing provers yield improved Karp-Lipton collapse results. Inf. Comput. 198(1), 1–23 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cai, L., Yang, B.: Parameterized Complexity of Even/Odd Subgraph Problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 85–96. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Cechlárová, K., Schlotter, I.: Computing the Deficiency of Housing Markets with Duplicate Houses. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 72–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. J. ACM 55(5), 1–19 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Díaz, J., Thilikos, D.M.: Fast FPT-Algorithms for Cleaning Grids. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 361–371. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Dorn, F., Moser, H., Niedermeier, R., Weller, M.: Efficient Algorithms for Eulerian Extension. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 100–111. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman problem. Math. Program. 5, 88–124 (1973)CrossRefMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. on Computing 5, 704–714 (1976)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Guo, J.: Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theor. Comput. Sci. 289, 997–1008 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kolman, P., Pangrác, O.: On the complexity of paths avoiding forbidden pairs. Discrete Applied Mathematics 157(13), 2871–2876 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kratsch, S., Wahlström, M.: Two Edge Modification Problems Without Polynomial Kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Lokshtanov, D.: Wheel-Free Deletion is W[2]-Hard. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 141–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems and generalizations. In: CATS, pp. 79–86 (2008)Google Scholar
  24. 24.
    Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced subgraphs. Journal of Discrete Algorithms 7, 181–190 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113, 109–128 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Philip, G., Raman, V., Villanger, Y.: A Quartic Kernel for Pathwidth-one Vertex Deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 196–207. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Plesník, J.: The NP-completeness of the Hamiltonian cycle problem in planar digraphs with degree bound two. Inf. Process. Lett. 8(4), 199–201 (1979)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theor. Comput. Sci. 351, 446–458 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Raman, V., Sikdar, S.: Parameterized complexity of the induced subgraph problem in directed graphs. Inf. Process. Lett. 104, 79–85 (2007)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sorge, M.: On making directed graphs Eulerian. CoRR abs/1101.4283 (2011)Google Scholar
  31. 31.
    Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26, 287–300 (1983)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marek Cygan
    • 1
  • Dániel Marx
    • 2
  • Marcin Pilipczuk
    • 1
  • Michał Pilipczuk
    • 1
  • Ildikó Schlotter
    • 3
  1. 1.Institute of InformaticsUniversity of WarsawPoland
  2. 2.Institut für InformatikHumboldt-Universität zu BerlinGermany
  3. 3.Department of Computer Science and Information TheoryBudapest University of Technology and EconomicsHungary

Personalised recommendations